已知平面內(nèi)的向量
a
,
b
,
c
兩兩所成的角相等,且|
a
|=2,|
b
|=3
,|
c
|=5
,則|
a
+
b
+
c
|
的值的集合為
{
7
,10}
{
7
,10}
分析:設(shè)平面內(nèi)的向量
a
,
b
c
兩兩所成的角為α,|
a
+
b
+
c
|
2=4+9+25+12cosα+20cosα+30cosα=38+62cosα,.當(dāng)α=0°時(shí),|
a
+
b
+
c
|
2=100,|
a
+
b
+
c
|
=10;當(dāng)α=120°時(shí),|
a
+
b
+
c
|
2=7,|
a
+
b
+
c
|
=
7
解答:解:設(shè)平面內(nèi)的向量
a
,
b
,
c
兩兩所成的角為α,
|
a
+
b
+
c
|
2=4+9+25+12cosα+20cosα+30cosα=38+62cosα,
當(dāng)α=0°時(shí),|
a
+
b
+
c
|
2=100,|
a
+
b
+
c
|
=10,
當(dāng)α=120°時(shí),|
a
+
b
+
c
|
2=7,|
a
+
b
+
c
|
=
7

所以,|
a
+
b
+
c
|
的值的集合為{
7
,10
}.
故答案為:{
7
,10
}.
點(diǎn)評(píng):本題考查向量的模的概念,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意平面向量數(shù)量積的性質(zhì)和運(yùn)算律的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知對(duì)任意的平面向量,把
AB
繞其起點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)θ角,得到向量
AP
=(xcosθ-ysinθ,xsinθ+ycosθ)
,叫做把點(diǎn)B繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)θ角得到點(diǎn)P
①已知平面內(nèi)的點(diǎn)A(1,2),B(1+
2
,2-2
2
)
,把點(diǎn)B繞點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn)
4
后得到點(diǎn)P,求點(diǎn)P的坐標(biāo)
②設(shè)平面內(nèi)曲線C上的每一點(diǎn)繞逆時(shí)針方向旋轉(zhuǎn)
π
4
后得到的點(diǎn)的軌跡是曲線x2-y2=1,求原來曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•大連二模)已知平面內(nèi)的向量
OA
,
OB
滿足:|
OA
|=|
OB
|=
OA
OB
1的夾角為
π
3
,又
OP
=m
OA
+n
OB
,0≤m≤1,1≤n≤2
,則點(diǎn)P的集合所表示的圖形面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知平面內(nèi)的向量
a
b
,
c
兩兩所成的角相等,且|
a
|=2,|
b
|=3
,|
c
|=5
,則|
a
+
b
+
c
|
的值的集合為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知平面內(nèi)的向量
a
,
b
c
兩兩所成的角相等,且|
a
|=2,|
b
|=3
|
c
|=5
,則|
a
+
b
+
c
|
的值的集合為______.

查看答案和解析>>

同步練習(xí)冊答案