為了解某市市民對政府出臺樓市限購令的態(tài)度,在該市隨機抽取了50名市民進行調(diào)查,他們月收入(單位:百元)的頻數(shù)分布及對樓市限購令的贊成人數(shù)如下表:
月收入

[25,35)
[35,45)



頻數(shù)
5
10
15
10
5
5
贊成人數(shù)
4
8
8
5
2
1
將月收入不低于55的人群稱為“高收入族”,月收入低于55的人群稱為“非高收人族”。
(Ⅰ)根據(jù)已知條件完成下面的2×2列聯(lián)表,有多大的把握認為贊不贊成樓市限購令與收入高低有關(guān)?
已知:,
<2.706時,沒有充分的證據(jù)判定贊不贊成樓市限購令與收入高低有關(guān);
>2.706時,有90%的把握判定贊不贊成樓市限購令與收入高低有關(guān);
>3.841時,有95%的把握判定贊不贊成樓市限購令與收入高低有關(guān);
>6.635時,有99%的把握判定贊不贊成樓市限購令與收入高低有關(guān)。
 
非高收入族
高收入族
總計
贊成
 
 
 
不贊成
 
 
 
總計
 
 
 
(Ⅱ)現(xiàn)從月收入在[55,65)的人群中隨機抽取兩人,求所抽取的兩人中至少一人贊成樓市限購令的概率。
(Ⅰ)
 
非高收入族
高收入族
總計
贊成
25
3
28
不贊成
15
7
22
總計
40
10
50
有90%的把握認為樓市限購令與收入高低有關(guān);(Ⅱ)所求概率=

試題分析:(Ⅰ)可根據(jù)頻數(shù)分布表中的數(shù)據(jù),很容易完成列聯(lián)表,由列聯(lián)表中數(shù)據(jù),代入公式,求出,從而比較數(shù)據(jù)得結(jié)論;(Ⅱ)現(xiàn)從月收入在[55,65)的人群中隨機抽取兩人,求所抽取的兩人中至少一人贊成樓市限購令的概率,這顯然符合古典概型,即隨機事件的概率,因此可用列舉法得到總的基本事件數(shù)共10種,以及符合條件的基本事件數(shù)共7種,從而得所抽取的兩人中至少一人贊成樓市限購令的概率.
試題解析:(Ⅰ)
 
非高收入族
高收入族
總計
贊成
25
3
28
不贊成
15
7
22
總計
40
10
50
故有90%的把握認為樓市限購令與收入高低有關(guān);(5分)
(Ⅱ)設月收入在[55,65)的5人的編號為a,b,c,d,e,其中a,b為贊成樓市限購令的人.從5人中抽取兩人的方法數(shù)有ab,ac,ad,ae,bc,bd,be,cd,ce,de共10種,其中ab,ac,ad,ae,bc,bd,be為有利事件數(shù),因此所求概率=。(12分)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某工廠甲、乙兩個車間包裝同一種產(chǎn)品,在自動包裝傳送帶上每隔小時抽一包產(chǎn)品,稱其重量(單位:克)是否合格,分別記錄抽查數(shù)據(jù),獲得重量數(shù)據(jù)的莖葉圖如圖所示.

(1)根據(jù)樣品數(shù)據(jù),計算甲、乙兩個車間產(chǎn)品重量的平均值與方差,并說明哪個車間的產(chǎn)品的重量相對較穩(wěn)定;
(2)若從乙車間件樣品中隨機抽取兩件,求所抽取的兩件樣品的重量之差不超過克的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

從{1,2,3,4,5}中隨機選取一個數(shù)為a,從{1,2,3}中隨機選取一個數(shù)為b,則b>a的概率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng))AB,系統(tǒng)AB在任意時刻發(fā)生故障的概率分別為p.
(1)若在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率為,求p的值;
(2)設系統(tǒng)A在3次相互獨立的檢測中不發(fā)生故障的次數(shù)為隨機變量ξ,求ξ的概率分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

先后拋擲一枚質(zhì)地均勻的骰子(各面上分別標有點數(shù))兩次,骰子朝上的面的點數(shù)依次記為,則雙曲線為等軸雙曲線的概率為   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

右圖的莖葉圖是甲、乙兩人在4次模擬測試中的成績,其中一個數(shù)字被污損,則甲的平均成績不超過乙的平均成績的概率為       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設a∈{1,2,3},b∈{2,4,6},則函數(shù)y=是減函數(shù)的概率為  。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設集合,對于,記,且,由所有組成的集合記為:
(1)的值為________;
(2)設集合,對任意,,則的概率為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

盒中裝有形狀、大小完全相同的5個小球,其中紅色球3個,黃色球2個.若從中隨機取出2個球,則取出的2個球顏色不同的概率為         .

查看答案和解析>>

同步練習冊答案