(本小題滿分12分)
已知函數(shù),,設(shè)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若以函數(shù)圖像上任意一點(diǎn)為切點(diǎn)的切線的斜率恒成立,求實(shí)數(shù)的最小值;
(Ⅲ)是否存在實(shí)數(shù)m,使得函數(shù)的圖像與函數(shù)的圖像恰有四個(gè)不同的交點(diǎn)?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說(shuō)明理由。
(1) 的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為。
(2)
(3) 當(dāng)時(shí),的圖象與的圖象恰有四個(gè)不同的交點(diǎn)

試題分析:解:(I)
,由,∴上單調(diào)遞增。
,∴上單調(diào)遞減。
的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為。
(II),
恒成立
當(dāng)時(shí),取得最大值。
,∴
(III)若的圖象與的圖象恰有四個(gè)不同得交點(diǎn),即有四個(gè)不同的根,亦即有四個(gè)不同的根。
,

當(dāng)x變化時(shí),、的變化情況如下表:
x




的符號(hào)




的單調(diào)性




由表格知:,
畫(huà)出草圖和驗(yàn)證可知,當(dāng)時(shí),恰有四個(gè)不同的交點(diǎn)。
∴當(dāng)時(shí),的圖象與的圖象恰有四個(gè)不同的交點(diǎn)。
點(diǎn)評(píng):解決該試題的關(guān)鍵是能結(jié)合導(dǎo)數(shù)的符號(hào)判定函數(shù)單調(diào)性,以及函數(shù)的最值,進(jìn)而得到求解。同時(shí)對(duì)于方程根的問(wèn)題,轉(zhuǎn)換為圖像與x軸的交點(diǎn)個(gè)數(shù)來(lái)處理,屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分10分)
已知函數(shù)處取得極值,并且它的圖象與直線在點(diǎn)( 1 , 0 ) 處相切, 求a , b , c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知 
⑴若的極值點(diǎn),求實(shí)數(shù)值。
⑵若對(duì)都有成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè),若處的切線與直線垂直,則實(shí)
數(shù)的值為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)f(x)=a ln xx+1,其中a∈R,曲線yf(x)在點(diǎn)(1,f(1))處的切線垂直于y軸.(1)求a的值;(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)的圖像在點(diǎn)處的切線的斜率為3,數(shù)列的前項(xiàng)和為,則的值為(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004441156272.png" style="vertical-align:middle;" />的函數(shù)滿足的導(dǎo)函數(shù),則不等式的解集為_(kāi)______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù)(其中e是自然對(duì)數(shù)的底數(shù),k為正數(shù))
(1)若處取得極值,且的一個(gè)零點(diǎn),求k的值;
(2)若,求在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
已知函數(shù)
(1)判斷的單調(diào)性;
(2)記若函數(shù)有兩個(gè)零點(diǎn),求證

查看答案和解析>>

同步練習(xí)冊(cè)答案