已知f(x)=lgx:
(1)在中學數(shù)學中,從特殊到一般,從具體到抽象是常見的一種思維形式,如從f(x)=lgx可抽象出性質:f=f(x1)+f(x2).
對于下面兩個具體函數(shù),試分別抽象出一個與上面類似的性質:
由h(x)=2x可抽象出性質為______,
由φ(x)=3x+1可抽象出性質為______.
(2)g(x)=f(x2+6x+4)-f(x),求g(x)的最小值.
【答案】分析:(1)根據(jù)對數(shù)函數(shù)的性質可得h(x)滿足h(x1+x2)=h(x1)•h(x2),根據(jù)一次函數(shù)的性質可得φ(x)滿足φ(x1+x2)=φ(x1)+φ(x2
(2)由已知中f(x1•x2)=f(x1)+f(x2),求出函數(shù)g(x)的解析式,并分析函數(shù)的單調性,進而可得函數(shù)的最值.
解答:解:(1)h(x)滿足h(x1+x2)=h(x1)•h(x2)------------------(2分)
φ(x)滿足φ(x1+x2)=φ(x1)+φ(x2)----------------(4分)
故答案為:h(x1+x2)=h(x1)•h(x2),φ(x1+x2)=φ(x1)+φ(x2)(答案不唯一)
(2)g(x)=f(x2+6x+4)-f(x)=lg(x2+6x+4)-lgx
=-------------------(5分)
,
任取0<x1<x2

當0<x1<x2≤2時,h(x1)-h(x2)>0,h(x1)>h(x2),
當2≤x1<x2時,h(x1)-h(x2)<0,h(x1)<h(x2),
h(x)在(0,2]上單調遞減,在[2,+∞)上單調遞增,--------------(8分)
故當x=2時,hmin(x)=4,這時gmin(x)=1.------------------(10分)
點評:本題考查的知識點是抽象函數(shù)及其應用,函數(shù)單調性的判斷與證明,其中(1)的結論是解答抽象函數(shù)時,將“抽象”化為“具體”的常用結論,請注意總結.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=lgx,函數(shù)f(x)定義域中任意的x1,x2(x1≠x2),有如下結論:
①0<f′(3)<f(3)-f(2)<f′(2);
②0<f′(3)<f′(2)<f(3)-f(2);
f(x1) -f(x2)
x1-x2
>0;
④f(
x1+x2
2
)<
f(x1) +f(x2)
2

上述結論中正確結論的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義函數(shù)y=f(x),x∈D,若存在常數(shù)C,對任意的x1∈D,存在唯一的x2∈D,使得
f(x1)+f(x2
2
=C,則稱函數(shù)f(x)在D上的均值為C.已知f(x)=lgx,x∈[10,100],則函數(shù)f(x)=lgx在x∈[10,100]上的均值為( 。
A、
3
2
B、
3
4
C、
7
10
D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=|lgx|,則f(
1
4
)
、f(
1
3
)、f(2)的大小關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=|lgx|,且f(a)=f(b)(a≠b)則ab的值( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•黃岡模擬)已知f(x)=|lgx|,若0<a<b,則a>1是f(a)<f(b)的(  )條件.

查看答案和解析>>

同步練習冊答案