(理)已知正方體ABCD—A1B1C1D1的棱長為1,對于下列結論:①BD1⊥平面A1DC1;②A1C1和AD1所成角為45°;③點A與點C1在該正方體外接球表面上的球面距離為π.其中正確結論的個數(shù)是

A.0                  B.1                  C.2                    D.3

(理)解析:由三垂線定理易證BD1⊥A1D,BD1⊥A1C1,∴①正確;

A1C1與AD1所成的角等于AD1與AC所成的角為60°,②不正確;

正方體外接球的半徑為,AC1為內接球的一條直徑.∴A,C1兩點間的球面距離為半圓周長,即πR=π,③正確,即①③正確.

答案:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文做理不做)正方體ABCD-A1B1C1D1中,p、q、r分別是AB、AD、B1C1的中點.那么正方體的過P、Q、R的截面圖形是
正六邊形
正六邊形

(理做文不做)已知空間三個點A(-2,0,2)、B(-1,1,2)和C(-3,0,4),設
a
=
AB
,
b
=
AC
.當實數(shù)k為
k=-
5
2
或k=2
k=-
5
2
或k=2
時k
a
+
b
與k
a
-2
b
互相垂直.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•靜安區(qū)一模)已知正方體ABCD-A1B1C1D1的棱長為2,點E、F分別在底面正方形的邊AB、BC上,且AE=CF=
23
,點G為棱A1B1的中點.
(1)在圖中畫出正方體過三點E、F、G的截面,并保留作圖痕跡;
(2)(理)求(1)中的截面與底面ABCD所成銳二面角的大。
(3)(文)求出直線EC1與底面ABCD所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知正方體ABCD-A1B1C1D1的棱長為2,點E、F分別在底面正方形的邊AB、BC上,且數(shù)學公式,點G為棱A1B1的中點.
(1)在圖中畫出正方體過三點E、F、G的截面,并保留作圖痕跡;
(2)(理)求(1)中的截面與底面ABCD所成銳二面角的大。
(3)(文)求出直線EC1與底面ABCD所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

(文做理不做)正方體ABCD-A1B1C1D1中,p、q、r分別是AB、AD、B1C1的中點.那么正方體的過P、Q、R的截面圖形是________.
(理做文不做)已知空間三個點A(-2,0,2)、B(-1,1,2)和C(-3,0,4),設數(shù)學公式,數(shù)學公式.當實數(shù)k為________時k數(shù)學公式與k數(shù)學公式互相垂直.

查看答案和解析>>

科目:高中數(shù)學 來源:2006年上海市靜安區(qū)高考數(shù)學一模試卷(文理合卷)(解析版) 題型:解答題

已知正方體ABCD-A1B1C1D1的棱長為2,點E、F分別在底面正方形的邊AB、BC上,且,點G為棱A1B1的中點.
(1)在圖中畫出正方體過三點E、F、G的截面,并保留作圖痕跡;
(2)(理)求(1)中的截面與底面ABCD所成銳二面角的大。
(3)(文)求出直線EC1與底面ABCD所成角的大小.

查看答案和解析>>

同步練習冊答案