(本小題12分)
盒子中裝著標(biāo)有數(shù)字1、2、3、4的卡片分別有1張、2張、3張、4張,從盒子中任取3張卡片,每張卡片被取出的可能性都相等,用表示取出的3張卡片的最大數(shù)字,求:
(Ⅰ)取出的3張卡片上的數(shù)字互不相同的概率;
(Ⅱ)隨機(jī)變量的概率分布和數(shù)學(xué)期望;
(Ⅲ)設(shè)取出的三張卡片上的數(shù)字之和為,求
(1)
(2)
(3)
解:(1)                 -----4分
(2)的可能取的所有制有2,3,4                                        ------5分

                              ------8分
的分布列為

2
3
4




   ∴                              ----10分
(3)當(dāng)時,取出的3張卡片上的數(shù)字為1,2,2或1,2,3
當(dāng)取出的卡片上的數(shù)字為1,2,2或1,2,3的概率為
   ∴                                            ----14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知某射手射擊一次,擊中目標(biāo)的概率是.(1)求連續(xù)射擊5次,恰有3次擊中目標(biāo)的概率;
(2)求連續(xù)射擊5次,擊中目標(biāo)的次數(shù)X的數(shù)學(xué)期望和方差.
(3)假設(shè)連續(xù)2次未擊中目標(biāo),則中止其射擊,求恰好射擊5次后,被中止射擊的概率.(本題結(jié)果用分?jǐn)?shù)表示即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
某公司在“2010年上海世博會知識宣傳”活動中進(jìn)行抽獎活動,抽獎規(guī)則是:在一個盒子中裝有8張大小相同的精美卡片,其中2張印有“世博會歡迎您”字樣,2張印有“世博會會徽”圖案,4張印有“海寶”(世博會吉祥物)圖案,現(xiàn)從盒子里無放回的摸取卡片,找出印有“海寶”圖案的卡片表示中獎且停止摸卡。
(Ⅰ)求最多摸兩次中獎的概率;
(Ⅱ)用表示摸卡的次數(shù),求的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
甲、乙、丙3人投籃,投進(jìn)的概率分別是
(I)若3人各投籃1次,求3人都沒有投進(jìn)的概率;
(Ⅱ)(文)若3人各投籃1次,求3人恰有一人投進(jìn)的概率
(理)用表示乙投籃3次的進(jìn)球數(shù),求隨機(jī)變量的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
甲乙兩奧運(yùn)會主辦城市之間有7條網(wǎng)線并聯(lián),這7條網(wǎng)線能通過的信息量分別為1,1,2,2,2,3,3,現(xiàn)從中任選三條網(wǎng)線,設(shè)可通過的信息量為X,當(dāng)可通過的信息最,則可保證信息通暢。
(I)求線路信息通暢的概率;
(II)求線路可通過的信息量X的分布列及數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)甲乙兩位同學(xué)參加數(shù)學(xué)競賽培訓(xùn),F(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:
甲 82  81  79  78  95  88  93  84 
乙 92  95  80  75  83  80  90  85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度考慮,你認(rèn)為選派哪位學(xué)生參加合適?請說明理由;
(3)若將頻率視為概率,對甲同學(xué)在今后的3次數(shù)學(xué)競賽成績進(jìn)行預(yù)測,記這3次成績中高于80分的次數(shù)為X,求X的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
2009年我市城市建設(shè)取得最大進(jìn)展的一年,正式拉開了從“兩湖”時代走向“八里湖”時代的大幕。為了建設(shè)大九江的城市框架,市政府大力發(fā)展“八里湖”新區(qū),現(xiàn)有甲乙兩個項目工程待建,請三位專家獨(dú)立評審。假設(shè)每位專家評審結(jié)果為“支持”或“不支持”的概率都是,每個項目每獲得一位專家“支持”則加1分,“不支持”記為0分,令表示兩個項目的得分總數(shù)。
 (1)求甲項目得1分乙項目得2分的概率;
(2)求的數(shù)學(xué)期望E。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題


已知隨機(jī)變量的分布列如下:

0
1
2
3





=         ;的值是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知隨機(jī)變量ξ的分布列為P=k)=,k=1、2、3、4,則P(2<≤4)等于_______________

查看答案和解析>>

同步練習(xí)冊答案