【題目】已知橢圓ab0)長(zhǎng)軸的兩頂點(diǎn)為A、B,左右焦點(diǎn)分別為F1、F2,焦距為2ca=2c,過(guò)F1且垂直于x軸的直線被橢圓C截得的線段長(zhǎng)為3

1)求橢圓C的方程;

2)在雙曲線 上取點(diǎn)Q(異于頂點(diǎn)),直線OQ與橢圓C交于點(diǎn)P,若直線APBP、AQ、BQ的斜率分別為k1、k2、k3k4,試證明:k1+k2+k3+k4為定值;

3)在橢圓C外的拋物線Ky2=4x上取一點(diǎn)E,若EF1、EF2的斜率分別為,求的取值范圍.

【答案】12)0(3)

【解析】

1)由橢圓的通徑公式及a=2c,即可求得ab的值,即可求得橢圓方程方程;

2)根據(jù)直線的斜率公式,求得 ,由共線,得,即可求得結(jié)論;

3)先用E點(diǎn)坐標(biāo)表示,再根據(jù)函數(shù)單調(diào)性即可求得的取值范圍.

1)由題意a=2c,橢圓的通徑為=3,

因?yàn)?/span>a2=b2+c2,所以a=2,b=,c=1,

∴橢圓的標(biāo)準(zhǔn)方程:;

2)由(1)可知:A(﹣2,0),B2,0),F1(﹣1,0),F210),設(shè)Px1,y1),

,則=

設(shè)Qx2y2),則,則

==

共線,∴,

3)設(shè),由,解得:,

E在橢圓C外的拋物線Ky2=4x上一點(diǎn),則,

EF1 、EF2的斜率分別為,(

,(

在(,4),(4,+∞)上分別單調(diào)遞增,

的取值范圍

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了檢測(cè)某種零件的一條生產(chǎn)線的生產(chǎn)過(guò)程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)分成,,,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認(rèn)為該零件屬不合格的零件,其中,分別為樣本平均和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

1)若一個(gè)零件的尺寸是,試判斷該零件是否屬于不合格的零件;

2)工廠利用分層抽樣的方法從樣本的前組中抽出個(gè)零件,標(biāo)上記號(hào),并從這個(gè)零件中再抽取個(gè),求再次抽取的個(gè)零件中恰有個(gè)尺寸小于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓),點(diǎn)為橢圓短軸的上端點(diǎn),為橢圓上異于點(diǎn)的任一點(diǎn),若點(diǎn)到點(diǎn)距離的最大值僅在點(diǎn)為短軸的另一端點(diǎn)時(shí)取到,則稱此橢圓為“圓橢圓”,已知.

1)若,判斷橢圓是否為“圓橢圓”;

2)若橢圓是“圓橢圓”,求的取值范圍;

3)若橢圓是“圓橢圓”,且取最大值,關(guān)于原點(diǎn)的對(duì)稱點(diǎn),也異于點(diǎn),直線、分別與軸交于、兩點(diǎn),試問(wèn)以線段為直徑的圓是否過(guò)定點(diǎn)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)寫出曲線的極坐標(biāo)方程,并求出曲線公共弦所在直線的極坐標(biāo)方程;

2)若射線與曲線交于兩點(diǎn),與曲線交于點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)三棱錐的每個(gè)頂點(diǎn)都在球的球面上,是面積為的等邊三角形,,,且平面平面.

1)求球的表面積;

2)證明:平面平面,且平面平面.

3)與側(cè)面平行的平面與棱,,分別交于,,求四面體的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

1)求函數(shù)的單調(diào)區(qū)間;

2)討論函數(shù)零點(diǎn)的個(gè)數(shù);

3)若存在兩個(gè)不同的零點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形ABCD為正方形,平面ABCD,,,

1)求證:平面PAD;

2)在棱AB上是否存在一點(diǎn)F,使得平面平面PCE?如果存在,求的值;如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列的首項(xiàng)為,公差為,等比數(shù)列的首項(xiàng)為,公比為,其中,且

1)求證:,并由推導(dǎo)的值;

2)若數(shù)列共有項(xiàng),前項(xiàng)的和為,其后的項(xiàng)的和為,再其后的項(xiàng)的和為,求的比值.

3)若數(shù)列的前項(xiàng),前項(xiàng)、前項(xiàng)的和分別為,試用含字母的式子來(lái)表示(即,且不含字母

查看答案和解析>>

同步練習(xí)冊(cè)答案