【題目】某產(chǎn)品生產(chǎn)廠家生產(chǎn)一種產(chǎn)品,每生產(chǎn)這種產(chǎn)品 (百臺(tái)),其總成本為萬(wàn)元,其中固定成本為42萬(wàn)元,且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為15萬(wàn)元總成本固定成本生產(chǎn)成本銷(xiāo)售收入萬(wàn)元滿(mǎn)足,假定該產(chǎn)品產(chǎn)銷(xiāo)平衡即生產(chǎn)的產(chǎn)品都能賣(mài)掉,根據(jù)上述條件,完成下列問(wèn)題:
寫(xiě)出總利潤(rùn)函數(shù)的解析式利潤(rùn)銷(xiāo)售收入總成本;
要使工廠有盈利,求產(chǎn)量的范圍;
工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí),可使盈利最大?
【答案】(1)(2) 當(dāng)產(chǎn)量大于100臺(tái),小于820臺(tái)時(shí),能使工廠有盈利 (3) 當(dāng)工廠生產(chǎn)400臺(tái)時(shí),可使贏利最大為54萬(wàn)元.
【解析】
(1)根據(jù)利潤(rùn)=銷(xiāo)售收入﹣總成本,且總成本為42+15x即可求得利潤(rùn)函數(shù)y=f(x)的解析式.
(2)使分段函數(shù)y=f(x)中各段均大于0,再將兩結(jié)果取并集.
(3)分段函數(shù)y=f(x)中各段均求其值域求最大值,其中最大的一個(gè)即為所求.
解:(1)由題意得G(x)=42+15x.
∴f(x)=R(x)﹣G(x)=.
(2)①當(dāng)0≤x≤5時(shí),由﹣6x2+48x﹣42>0得:x2﹣8x+7<0,解得1<x<7.
所以:1<x≤5.
②當(dāng)x>5時(shí),由123﹣15x>0解得x<8.2.所以:5<x<8.2.
綜上得當(dāng)1<x<8.2時(shí)有y>0.
所以當(dāng)產(chǎn)量大于100臺(tái),小于820臺(tái)時(shí),能使工廠有盈利.
(3)當(dāng)x>5時(shí),∵函數(shù)f(x)遞減,
∴f(x)<f(5)=48(萬(wàn)元).
當(dāng)0≤x≤5時(shí),函數(shù)f(x)=﹣6(x﹣4)2+54,
當(dāng)x=4時(shí),f(x)有最大值為54(萬(wàn)元).
所以,當(dāng)工廠生產(chǎn)400臺(tái)時(shí),可使贏利最大為54萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax+x2﹣xlna(a>0且a≠1)
(1)求函數(shù)f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)求函數(shù)f(x)單調(diào)區(qū)間;
(3)若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1(e是自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù),則下列結(jié)論錯(cuò)誤的是( )
A. 是偶函數(shù) B. 的值域是
C. 方程的解只有 D. 方程的解只有
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿(mǎn)足a1=0,an+1=an+2 +1
(1)求證數(shù)列{ }是等差數(shù)列,并求出an的通項(xiàng)公式;
(2)若bn= ,求數(shù)列的前n項(xiàng)的和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠家擬在2019年舉行促銷(xiāo)活動(dòng),經(jīng)過(guò)調(diào)查測(cè)算,該產(chǎn)品的年銷(xiāo)量(即該廠的年產(chǎn)量)(單位:萬(wàn)件)與年促銷(xiāo)費(fèi)用()(單位:萬(wàn)元)滿(mǎn)足(為常數(shù)),如果不搞促銷(xiāo)活動(dòng),則該產(chǎn)品的年銷(xiāo)量只能是1萬(wàn)件. 已知2019年生產(chǎn)該產(chǎn)品的固定投入為6萬(wàn)元,每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入12萬(wàn)元,廠家將每件產(chǎn)品的銷(xiāo)售價(jià)格定為每件產(chǎn)品平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分).
(1)將該廠家2019年該產(chǎn)品的利潤(rùn)萬(wàn)元表示為年促銷(xiāo)費(fèi)用萬(wàn)元的函數(shù);
(2)該廠家2019年的年促銷(xiāo)費(fèi)用投入多少萬(wàn)元時(shí),廠家利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面是不重合的兩個(gè)面,下列命題中,所有正確命題的序號(hào)是_____.
①若, 分別是平面的法向量,則;
②若, 分別是平面, 的法向量,則;
③若是平面的法向量, 與共面,則;
④若兩個(gè)平面的法向量不垂直,則這兩個(gè)平面一定不垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司試銷(xiāo)一種成本單價(jià)為500元的新產(chǎn)品,規(guī)定試銷(xiāo)時(shí)銷(xiāo)售單價(jià)不低于成本單價(jià),又不高于800元.經(jīng)試銷(xiāo)調(diào)查,發(fā)現(xiàn)銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系可近似看作一次函數(shù)y=kx+b(k≠0),函數(shù)圖象如圖所示.
(1)根據(jù)圖象,求一次函數(shù)y=kx+b(k≠0)的表達(dá)式;
(2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷(xiāo)售總價(jià)-成本總價(jià))為S元.試問(wèn)銷(xiāo)售單價(jià)定為多少時(shí),該公司可獲得最大毛利潤(rùn)?最大毛利潤(rùn)是多少?此時(shí)的銷(xiāo)售量是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為 . (Ⅰ)求圓C的普通方程和直線l的直角坐標(biāo)方程;
(Ⅱ)設(shè)M是直線l上任意一點(diǎn),過(guò)M做圓C切線,切點(diǎn)為A、B,求四邊形AMBC面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市“金牛”公園欲在長(zhǎng)、寬分別為 、的矩形地塊內(nèi)開(kāi)鑿一“撻圓”形水池(如圖),池邊由兩個(gè)半橢圓和()組成,其中,“撻圓”內(nèi)切于矩形且其左右頂點(diǎn), 和上頂點(diǎn)構(gòu)成一個(gè)直角三角形.
(1)試求“撻圓”方程;
(2)若在“撻圓”形水池內(nèi)建一矩形網(wǎng)箱養(yǎng)殖觀賞魚(yú),則該網(wǎng)箱水面面積最大為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com