【題目】已知函數(shù) ,且
(1)求實數(shù)c的值;
(2)解不等式

【答案】
(1)解:∵0<c<1,

∴c2<c,又f(c2)= ,即c3+1= ,

解得c= ;


(2)解:∵f(x)= ,由f(x)> +1得:

當(dāng)0<x< 時,解得 <x< ;

當(dāng) ≤x<1時解得 ≤x<1,

∴f(x)> +1的解集為{x| <x<1}


【解析】(1)由題意知,0<c<1,于是c2<c,從而由f(c2)= 即可求得實數(shù)c的值;(2)利用f(x)= ,解不等式f(x)> +1即可求得答案.
【考點精析】本題主要考查了函數(shù)的零點的相關(guān)知識點,需要掌握函數(shù)的零點就是方程的實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo).即:方程有實數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點,函數(shù)有零點才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017河北唐山三!已知函數(shù), .

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)在區(qū)間有唯一零點,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,點M是AB的中點,則直線DB1與MC所成角的余弦值為(
A.﹣
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=120°,AC=3,△ABC的面積等于 ,D為邊長BC上一點.

(1)求BC的長;
(2)當(dāng)AD= 時,求cos∠CAD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.
(2)若a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)

設(shè)ABC三個內(nèi)角A、B、C所對的邊分別為a,b,c. 已知C=,acosA=bcosB.

(1)求角A的大。

(2)如圖,在ABC的外角ACD內(nèi)取一點P使得PC=2.過點P分別作直線CA、CD的垂線PM、PN,垂足分別是M、N.設(shè)PCA=α,求PM+PN的最大值及此時α的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分為16為了保護環(huán)境,發(fā)展低碳經(jīng)濟,某單位在國家科研部門的支持下,進行技術(shù)攻關(guān),新上了把二氧化碳處理轉(zhuǎn)化為一種可利用的化工產(chǎn)品的項目,經(jīng)測算,該項目月處理成本y與月處理量x之間的函數(shù)關(guān)系可近似地表示為

,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為200元,若該項目不獲利,國家將給予補償

1當(dāng)x[200,300]時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家每月至少需要補貼多少元才能使該項目不虧損?

2該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)在邊長為1的正方形ABCD內(nèi)任取一點M,求事件“|AM|≤1”的概率;
(2)某班在一次數(shù)學(xué)活動中,老師讓全班56名同學(xué)每人隨機寫下一對都小于1的正實數(shù)x、y,統(tǒng)計出兩數(shù)能與1構(gòu)成銳角三角形的三邊長的數(shù)對(x,y)共有12對,請據(jù)此估計π的近似值(精確到0.001).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視傳媒公司為了了解某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該類體育節(jié)目時間的頻率分布直方圖,其中收看時間分組區(qū)間是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].將日均收看該類體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.則抽取的100名觀眾中“體育迷”有名.

查看答案和解析>>

同步練習(xí)冊答案