(2013•北京)如圖,在正方體ABCD-A1B1C1D1中,P為對(duì)角線(xiàn)BD1的三等分點(diǎn),P到各頂點(diǎn)的距離的不同取值有( 。
分析:建立如圖所示的空間直角坐標(biāo)系,不妨設(shè)正方體的棱長(zhǎng)|AB|=3,即可得到各頂點(diǎn)的坐標(biāo),利用兩點(diǎn)間的距離公式即可得出.
解答:解:建立如圖所示的空間直角坐標(biāo)系,不妨設(shè)正方體的棱長(zhǎng)|AB|=3,
則A(3,0,0),B(3,3,0),C(0,3,0),D(0,0,0),A1(3,0,3),B1(3,3,3),C1(0,3,3),D1(0,0,3),
BD1
=(-3,-3,3),設(shè)P(x,y,z),∵
BP
=
1
3
BD1
=(-1,-1,1),∴
DP
=
DB
+(-1,-1,1)
=(2,2,1).
∴|PA|=|PC|=|PB1|=
12+22+12
=
6

|PD|=|PA1|=|PC1|=
22+22+12
=3
,
|PB|=
3

|PD1|=
22+22+22
=2
3

故P到各頂點(diǎn)的距離的不同取值有
6
,3,
3
2
3
共4個(gè).
故選B.
點(diǎn)評(píng):熟練掌握通過(guò)建立空間直角坐標(biāo)系及兩點(diǎn)間的距離公式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•北京)如圖,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E為BC的中點(diǎn),點(diǎn)P在線(xiàn)段D1E上,點(diǎn)P到直線(xiàn)CC1的距離的最小值為
2
5
5
2
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•北京)如圖,在四棱錐P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分別是CD和PC的中點(diǎn),求證:
(Ⅰ)PA⊥底面ABCD;
(Ⅱ)BE∥平面PAD;
(Ⅲ)平面BEF⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•北京)如圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機(jī)選擇3月1日至3月15日中的某一天到達(dá)該市,并停留2天.

(Ⅰ)求此人到達(dá)當(dāng)日空氣重度污染的概率;
(Ⅱ)設(shè)x是此人停留期間空氣質(zhì)量?jī)?yōu)良的天數(shù),求X的分布列與數(shù)學(xué)期望;
(Ⅲ)由圖判斷從哪天開(kāi)始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•北京)如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求證二面角A1-BC1-B1的余弦值;
(Ⅲ)證明:在線(xiàn)段BC1上存在點(diǎn)D,使得AD⊥A1B,并求
BDBC1
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案