【題目】已知函數(shù)f(x)=|cosx|sinx,給出下列四個(gè)說(shuō)法:
①f(x)為奇函數(shù); ②f(x)的一條對(duì)稱軸為x= ;
③f(x)的最小正周期為π; ④f(x)在區(qū)間[﹣ , ]上單調(diào)遞增;
⑤f(x)的圖象關(guān)于點(diǎn)(﹣ ,0)成中心對(duì)稱.
其中正確說(shuō)法的序號(hào)是 .
【答案】①②④
【解析】解:函數(shù)f(x)=|cosx|sinx= (k∈Z),
①、f(﹣x)=|cos(﹣x)|sin(﹣x)=﹣|cosx|sinx=﹣f(x),
則f(x)是奇函數(shù),①正確;
②、∵f(π﹣x)=|cos(π﹣x)|sin(π﹣x)=|﹣cosx|sinx=f(x),
∴f(x)的一條對(duì)稱軸為x= ,②正確;
③、∵f(π+x)=|cos(π+x)|sin(π+x)=|﹣cosx|(﹣sinx)=﹣f(x)≠f(x),
∴f(x)的最小正周期不是π,③不正確;
④、∵x∈[﹣ , ],∴f(x)=|cosx|sinx= sin2x,且2x∈[﹣ , ],
∴f(x)在區(qū)間[﹣ , ]上單調(diào)遞增,④正確;
⑤、∵f(﹣π﹣x)=|cos(﹣π﹣x)|sin(﹣π﹣x)=|﹣cosx|sinx=f(x)≠﹣f(x),
∴f(x)的圖象不關(guān)于點(diǎn)(﹣ ,0)成中心對(duì)稱,⑤不正確;
所以答案是:①②④.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識(shí),掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)站針對(duì)2015年中國(guó)好聲音歌手A,B,C三人進(jìn)行網(wǎng)上投票,結(jié)果如下
觀眾年齡 | 支持A | 支持B | 支持C |
20歲以下 | 100 | 200 | 600 |
20歲以上(含20歲) | 100 | 100 | 400 |
(1)在所有參與該活動(dòng)的人中,用分層抽樣的方法抽取n人,其中有6人支持A,求n的值.
(2)在支持C的人中,用分層抽樣的方法抽取5人作為一個(gè)總體,從這5人中任意選取2人,求恰有1人在20歲以下的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面內(nèi)有向量 =(1,7), =(5,1), =(2,1),點(diǎn)X為直線OP上的一個(gè)動(dòng)點(diǎn).
(1)當(dāng) 取最小值時(shí),求 的坐標(biāo);
(2)當(dāng)點(diǎn)X滿足(1)的條件和結(jié)論時(shí),求cos∠AXB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(文)已知矩形ABB1A1是圓柱體的軸截面,O、O1分別是下底面圓和上底面圓的圓心,母線長(zhǎng)與底面圓的直徑長(zhǎng)之比為2:1,且該圓柱體的體積為32π,如圖所示.
(1)求圓柱體的側(cè)面積S側(cè)的值;
(2)若C1是半圓弧 的中點(diǎn),點(diǎn)C在半徑OA上,且OC= OA,異面直線CC1與BB1所成的角為θ,求sinθ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Tn= n2﹣ n,且an+2+3log4bn=0(n∈N*)
(1)求{bn}的通項(xiàng)公式;
(2)數(shù)列{cn}滿足cn=anbn , 求數(shù)列{cn}的前n項(xiàng)和Sn;
(3)若cn≤ m2+m﹣1對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知四棱錐P﹣ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點(diǎn),求證:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人口老齡化的到來(lái),我國(guó)的勞動(dòng)力人口在不斷減少,“延遲退休”已經(jīng)成為人們?cè)絹?lái)越關(guān)注的話題,為了解公眾對(duì)“延遲退休”的態(tài)度,某校課外研究性學(xué)習(xí)小組在某社區(qū)隨機(jī)抽取了50人進(jìn)行調(diào)查,將調(diào)查情況進(jìn)行整理后制成下表:
年齡 | [20,25) | [25,30) | [30,35) | [35,40) | [40,45) |
人數(shù) | 4 | 5 | 8 | 5 | 3 |
年齡 | [45,50) | [50,55) | [55,60) | [60,65) | [65,70) |
人數(shù) | 6 | 7 | 3 | 5 | 4 |
經(jīng)調(diào)查年齡在[25,30),[55,60)的被調(diào)查者中贊成“延遲退休”的人數(shù)分別是3人和2人.現(xiàn)從這兩組的被調(diào)查者中各隨機(jī)選取2人,進(jìn)行跟蹤調(diào)查.
(I)求年齡在[25,30)的被調(diào)查者中選取的2人都贊成“延遲退休”的概率;
(II)若選中的4人中,不贊成“延遲退休”的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓和直線,直線, 都經(jīng)過(guò)圓外定點(diǎn).
(1)若直線與圓相切,求直線的方程;
(2)若直線與圓相交于兩點(diǎn),與交于點(diǎn),且線段的中點(diǎn)為,
求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: ()過(guò)點(diǎn),且離心率為,過(guò)點(diǎn)的直線與橢圓交于, 兩點(diǎn).
(Ⅰ)求橢圓的的標(biāo)準(zhǔn)方程;
(Ⅱ)已知為坐標(biāo)原點(diǎn),且,求面積的最大值以及此時(shí)直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com