精英家教網 > 高中數學 > 題目詳情

已知數列{an}中,a1=1,an+1 (n∈N*).
(1)求數列{an}的通項an;
(2)若數列{bn}滿足bn=(3n-1)an,數列{bn}的前n項和為Tn,若不等式(-1)nλTn對一切n∈N*恒成立,求λ的取值范圍.

(1)(2)-1<λ<2

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知成等比數列, 公比為,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列的各項均滿足,,
(1)求數列的通項公式;
(2)設數列的通項公式是,前項和為,
求證:對于任意的正數,總有.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設Sn為數列{an}的前n項和,已知a1≠0,2an-a1=S1·Sn,n∈N*.
(1)求a1,a2,并求數列{an}的通項公式;
(2)求數列{nan}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知等比數列{an}滿足an+1an=9·2n-1,n∈N*.
(1)求數列{an}的通項公式;
(2)設數列{an}的前n項和為Sn,若不等式Snkan-2對一切n∈N*恒成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

數列{an}中,a1=3,an+1=an+cn(c是常數,n=1,2,3,…),且a1,a2,a3成公比不為1的等比數列.
(1)求c的值;
(2)求數列{an}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列{an}是等差數列,a2=6,a5=12,數列{bn}的前n項和是Sn,且Sn+bn=1.
(1)求數列{an}的通項公式.
(2)求證:數列{bn}是等比數列.
(3)記cn=,{cn}的前n項和為Tn,若Tn<對一切n∈N*都成立,求最小正整數m.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列{an}和{bn}滿足:a1λan+1ann-4,bn=(-1)n(an-3n+21),其中λ為實數,n為正整數.
(1)對任意實數λ,證明:數列{an}不是等比數列;
(2)試判斷數列{bn}是否為等比數列,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,設曲線在點處的切線與軸的交點為,其中為正實數.
(1)用表示
(2),若,試證明數列為等比數列,并求數列的通項公式;
(3)若數列的前項和,記數列的前項和,求

查看答案和解析>>

同步練習冊答案