已知a>0,a≠1,函數(shù)f(x)=若函數(shù)f(x)在[0,2]上的最大值比最小值大,則a的值為    .
若a>1,則函數(shù)f(x)在[0,1]遞增,[1,2]遞減,
∴f(x)max=f(1)=a,
f(x)min=f(0)=1或f(x)min=f(2)=a-2,

故a=.
若0<a<1,
則f(x)在[0,1]遞減,(1,2]遞減,
∴f(x)max=f(0)=1,f(x)min=f(2)=a-2,
∴1-(a-2)=,得a=,
綜上a=或a=.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)f(x)=x3+x2-2x-2的一個正數(shù)零點附近的函數(shù)值用二分法計算,其參考數(shù)據(jù)如下:
f(1)=-2
f(1.5)=0.625
f(1.25)=-0.984
f(1.375)=-0.260
f(1.4375)=0.162
f(1.40625)=-0.054
那么方程x3+x2-2x-2=0的一個近似根為________(精確到0.1).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=1-2ax-a2x(a>1).
(1)求函數(shù)f(x)的值域;
(2)若x∈[-2,1]時,函數(shù)f(x)的最小值是-7,求a的值及函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設計要求容器的容積為立方米,且l≥2r.假設該容器的建造費用僅與其表面積有關,已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為c(c>3)千元.設該容器的建造費用為y千元.

①寫出y關于r的函數(shù)表達式,并求該函數(shù)的定義域;
②求該容器的建造費用最小時的r.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知減函數(shù)f(x)的定義域是R,m,n∈R,如果不等式f(m)-f(n)>f(-m)-f(-n)成立,那么在下列給出的四個不等式中,正確的是(  )
A.m+n<0B.m+n>0
C.m-n<0D.m-n>0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設函數(shù)f(x)=則不等式f(x)>f(1)的解集是(  )
A.(-3,1)∪(3,+∞)B.(-3,1)∪(2,+∞)
C.(-1,1)∪(3,+∞)D.(-∞,-3)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)在區(qū)間內(nèi)有一個零點,則實數(shù)的取值可以是(   )
A.     B.   C.    D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對實數(shù)a和b,定義運算“?”:a?b=設函數(shù)f(x)=(x2-1)?(x-x2),x∈R.若函數(shù)y=f(x)-c恰有兩個不同的零點,則實數(shù)c的取值范圍是(  )
A.(-∞,-1)∪(-,0)B.{-1,-}
C.(-1,-)D.(-∞,-1)∪[-,0)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設f(x)=,求f(-12)+f(-11)+f(-10)+…+f(0)+…+f(11)+f(12)+f(13)的值.

查看答案和解析>>

同步練習冊答案