在如圖所示的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC.BC=2AD=4,EF=3,AE=BE=2,G為BC的中點(diǎn).
(1)求證:AB∥平面DEG;
(2)求證:BD⊥EG;
(3)求二面角C-DF-E的正弦值.
分析:(1)要證AB∥平面DEG,可在平面DEG中找到一條直線與AB平行,根據(jù)題目給出的條件,能夠證得AB∥DG;
(2)根據(jù)題目條件先證明EB、EA、EF兩兩相互垂直,然后以E為原點(diǎn),以EB、EF、EA所在直線分別為x、y、z軸建立空間直角坐標(biāo)系,運(yùn)用向量數(shù)量積等于0
BD
EG
,從而證明BD⊥EG;
(3)在(2)的基礎(chǔ)上,求出二面角的兩個(gè)半平面的法向量,利用法向量求二面角的平面角的余弦值.
解答:(1)證明:∵AD∥EF,EF∥BC,∴AD∥BC,
∵BC=2AD,G為BC的中點(diǎn),∴AD∥BG,且AD=BG,∴四邊形ABCD是平行四邊形,∴AB∥DG
因?yàn)锳B不在平面DEG中,DG在平面DEG內(nèi),∴AB∥平面DEG.
(2)證明:∵EF⊥平面AEB,AE?平面AEB,BE?平面AEB,
∴EF⊥AE,EF⊥BE,∵AE⊥EB,∴EB、EF、EA兩兩垂直.
以點(diǎn)E為坐標(biāo)原點(diǎn),EB、EF、EA所在直線分別為x、y、z軸建立空間直角坐標(biāo)系,
由已知得:A(0,0,2),B(2,0,0),C(2,4,0),D(0,2,2),F(xiàn)(0,3,0),G(2,2,0).
EG
=(2,2,0),
BD
=(-2,2,2)
,∴
BD
EG
=-2×2+2×2+2×0=0

∴BD⊥EG.
(3)解:由已知得
EB
=(2,0,0)
是平面EFDA的法向量,設(shè)平面DCF的法向量為
n
=(x,y,z)

FD
=(0,-1,2),
FC
=(2,1,0)
,∴
-y+2z=0
2x+y=0
,令z=1,得x=-1,y=2,即
n
=(-1,2,1)

設(shè)二面角C-DF-E的大小為θ,
cosθ=
n
EB
|
n
||
EB
|
=-
6
6
,∴sinθ=
30
6

∴二面角C-DF-E的正弦值為
30
6
點(diǎn)評(píng):本題考查了直線與平面平行的判定,直線與平面垂直的性質(zhì),考查了運(yùn)用平面法向量求二面角的三角函數(shù)值,解答此題的關(guān)鍵是正確建立空間直角坐標(biāo)系,是中檔題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在如圖所示的多面體中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EC⊥AC,EF∥AC,AB=
2
,EF=EC=1,
(1)求證:平面BEF⊥平面DEF;
(2)求二面角A-BF-E的大�。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在如圖所示的多面體中,底面△ABC是邊長(zhǎng)為2的正三角形,DA和EC均垂直于平面ABC,且DA=2,EC=1.
(Ⅰ)求點(diǎn)A到平面BDE的距離;
(Ⅱ)求二面角B-ED-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在如圖所示的多面體中,已知正方形ABCD和
直角梯形BDEF所在的平面互相垂直,EF∥BD,
ED⊥BD,AD=
2
,EF=ED=1,點(diǎn)P為線段
EF上任意一點(diǎn).
(Ⅰ)求證:CF⊥AP;
(Ⅱ)求二面角B-AF-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•日照一模)在如圖所示的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中點(diǎn).
(1)求證:BD⊥EG;
(2)求平面DEG與平面DEF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的多面體中,AA1∥BB1,CC1⊥AC,CC1⊥BC.
(1)求證:CC1⊥AB;
(2)求證:CC1∥AA1

查看答案和解析>>

同步練習(xí)冊(cè)答案
鍏� 闂�