已知橢圓的離心率為,其中左焦點(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,求m的值.
(1).(2).
(1) 由題意,得………………………………………………3分
解得∴橢圓C的方程為.…………………………………………6分
(2) 設點A、B的坐標分別為(x1,y1),(x2, y2),線段AB的中點為M(x0,y0),
消y得,3x2+4mx+2m2-8=0,……………………………………………7分
Δ=96-8m2>0,∴-2<m<2.
.………………………………………11分
∵點M(x0,y0)在圓x2+y2=1上,
,.…………………………………………………13分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)已知橢圓C1的離心率為,直線l: y-=x+2與.以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切.
(1)求橢圓C1的方程;
(ll)設橢圓C1的左焦點為F1,右焦點為F2,直線l2過點F價且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;
(III)過橢圓C1的左頂點A作直線m,與圓O相交于兩點R,S,若△ORS是鈍角三角形,     求直線m的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的頂點與雙曲線的焦點重合,它們的離心率之和為,若橢圓的焦點在軸上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

平面、、兩兩垂直,定點,A到距離都是1,P是上動點,P到的距離等于P到點的距離,則P點軌跡上的點到距離的最小值是          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

與橢圓共焦點且過點(5,-2)的雙曲線標準方程是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知拋物線、橢圓和雙曲線都經(jīng)過點,它們在軸上有共同焦點,橢圓和雙曲線的對稱軸是坐標軸,拋物線的頂點為坐標原點.
(1)求這三條曲線的方程;
(2)對于拋物線上任意一點,點都滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓上一點M到焦點的距離為2,的中點,則等于(   )
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知點是橢圓的右頂點,若點在橢圓上,且滿足.(其中為坐標原點)

(1)求橢圓的方程;
(2)若直線與橢圓交于兩點,當時,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)給定橢圓,稱圓心在原點,半徑為的圓是橢圓的“準圓”。若橢圓的一個焦點為,其短軸上的一個端點到的距離為.
(Ⅰ)求橢圓的方程和其“準圓”方程.
(Ⅱ)點是橢圓的“準圓”上的一個動點,過動點作直線使得與橢圓都只有一個交點,且分別交其“準圓”于點,求證:為定值.

查看答案和解析>>

同步練習冊答案