直線l過點P(1,2),且M(2,3)、N(4,-5)到l的距離相等,則直線l的方程是…(    )

A.4x+y-6=0                                       B.x+4y-6=0

C.3x+2y-7=0或4x+y-6=0                   D.2x+3y-7=0或x+4y-6=0

提示:kMN==-4,線段MN的中點是Q(3,-1),過點P與MN平行的直線方程是y-2=-4(x-1),即4x+y-6=0.過點P和Q的直線PQ的方程是=,即3x+2y-7=0,兩直線都滿足題設(shè).

答案:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點P(-1,2),且與以A(-2,-3)和B(3,0)為端點的線段AB相交,那么直線l的斜率的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點P(-1,2),且與以A(-2,-3),B(3,0)為端點的線段相交,那么直線l的斜率的取值范圍是_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l過點P(1,2),且M(2,3)、N(4,-5)到l的距離相等,則直線l的方程是(  )

A.4x+y-6=0

B.x+4y-6=0

C.3x+2y-7=0或4x+y-6=0

D.2x+3y-7=0或x+4y-6=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為x2+y2=4.

(1)直線l過點P(1,2),且與圓C交于A、B兩點,若|AB|=,求直線l的方程;

(2)過圓C上一動點M作平行于x軸的直線m,設(shè)m與y軸的交點為N,若向量,求動點Q的軌跡方程,并說明此軌跡是什么曲線.

(文)(本小題共13分)已知圓C的方程為x2+y2=4.

(1)直線l過點P(1,2),且與圓C交于A、B兩點,若|AB|=,求直線l的方程;

(2)圓C上一動點M(x0,y0),=(0,y0),若向量,求動點Q的軌跡方程,并說明此軌跡是什么曲線.

查看答案和解析>>

同步練習(xí)冊答案