若隨機變量A在一次試驗中發(fā)生的概率為p(0<p<1),用隨機變量ξ表示A在1次試驗中發(fā)生的次數(shù).
(1)求方差Dξ的最大值;
(2)求的最大值.
(1)當p=時,Dξ取得最大值為.(2)2-2.
【解析】
試題分析:解:隨機變量ξ的所有可能取值為0,1,并且有P(ξ=1)=p,P(ξ=0)=1-p,從而Eξ=0×(1-p)+1×p=p,Dξ=(0-p)2×(1-p)+(1-p)2×p=p-p2.
(1)Dξ=p-p2=-(p-)2+,
∵0<p<1,
∴當p=時,Dξ取得最大值為.
(2)==2-(2p+),
∵0<p<1,∴2p+≥2.
當且僅當2p=,即p=時,取得最大值2-2.
考點:本題考查兩點分布的期望和方差,及函數(shù)的最值問題。
點評:本題將概率知識與函數(shù)知識很好的結(jié)合,較好地考查了考生靈活運用知識的能力。難度不大,計算要準。
科目:高中數(shù)學 來源:2012-2013學年黑龍江省齊齊哈爾市高三二模理科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分12分)
一個不透明的袋子中裝有4個形狀相同的小球,分別標有不同的數(shù)字2,3,4,,現(xiàn)從袋中隨機摸出2個球,并計算摸出的這2個球上的數(shù)字之和,記錄后將小球放回袋中攪勻,進行重復試驗。記A事件為“數(shù)字之和為7”.試驗數(shù)據(jù)如下表
摸球總次數(shù) |
10 |
20 |
30 |
60 |
90 |
120 |
180 |
240 |
330 |
450 |
“和為7”出現(xiàn)的頻數(shù) |
1 |
9 |
14 |
24 |
26 |
37 |
58 |
82 |
109 |
150 |
“和為7”出現(xiàn)的頻率 |
0.10 |
0.45 |
0.47 |
0.40 |
0.29 |
0.31 |
0.32 |
0.34 |
0.33 |
0.33 |
(參考數(shù)據(jù):)
(Ⅰ)如果試驗繼續(xù)下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“數(shù)字之和為7”的頻率將穩(wěn)定在它的概率附近。試估計“出現(xiàn)數(shù)字之和為7”的概率,并求的值;
(Ⅱ)在(Ⅰ)的條件下,設定一種游戲規(guī)則:每次摸2球,若數(shù)字和為7,則可獲得獎金7元,否則需交5元。某人摸球3次,設其獲利金額為隨機變量元,求的數(shù)學期望和方差。
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年江西南昌10所省高三第二次模擬沖刺理科數(shù)學試卷(六)(解析版) 題型:解答題
某校高三年級組為了緩解學生的學習壓力,舉辦元宵猜燈謎活動。規(guī)定每人最多猜3道,在A區(qū)猜對一道燈謎獲3元獎品;在B區(qū)猜對一道燈謎獲2元獎品,如果前兩次猜題后所獲獎品總額超過3元即停止猜題,否則猜第三道題。假設某同學猜對A區(qū)的任意一道燈謎的概率為0.25,猜對B區(qū)的任意一道燈謎的概率為0.8,用表示該同學猜燈謎結(jié)束后所得獎品的總金額。
(1)若該同學選擇先在A區(qū)猜一題,以后都在B區(qū)猜題,求隨機變量的數(shù)學期望;
(2)試比較該同學選擇都在B區(qū)猜題所獲獎品總額超過3元與選擇(1)中方式所獲獎品總額超過3元的概率的大小。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com