如圖,曲線AC的方程為
x2
36
+
y2
16
=1
(0≤x≤6,0≤y≤4)為估計(jì)橢圓
x2
36
+
y2
16
=1
的面積,現(xiàn)采用隨機(jī)模擬方式產(chǎn)生x∈(0,6),y∈(0,4)的200個(gè)點(diǎn)(x,y),經(jīng)統(tǒng)計(jì),落在圖中陰影部分的點(diǎn)共157個(gè),則可估計(jì)橢圓
x2
36
+
y2
16
=1
的面積是
75.36
75.36
.(精確到0.01)
分析:求出點(diǎn)落在陰影部分的點(diǎn)的概率,再利用幾何概型概率公式,可求橢圓的面積S.
解答:解:解:根據(jù)題意:點(diǎn)落在陰影部分的點(diǎn)的概率是
157
200
=0.785
矩形的面積為96,∴橢圓
x2
36
+
y2
16
=1
的面積為S,∴S=0.785×96=75.36
故答案為:75.36.
點(diǎn)評(píng):本題主要考查模擬方法估計(jì)概率以及幾何概型中面積類型,將兩者建立關(guān)系,引入方程思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠CAB=90°,|AB|=2,|AC|=
32
,一曲線E過(guò)點(diǎn)C,且曲線E上任一點(diǎn)到A,B兩點(diǎn)的距離之和不變.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線E的方程;
(2)設(shè)點(diǎn)Q是曲線E上的一動(dòng)點(diǎn),求線段QA中點(diǎn)的軌跡方程;
(3)設(shè)M,N是曲線E上不同的兩點(diǎn),直線CM和CN的傾斜角互補(bǔ),試判斷直線MN的斜率是否為定值.如果是,求這個(gè)定值;如果不是,請(qǐng)說(shuō)明理由.
(4)若點(diǎn)D是曲線E上的任一定點(diǎn)(除曲線E與直線AB的交點(diǎn)),M,N是曲線E上不同的兩點(diǎn),直線DM和DN的傾斜角互補(bǔ),直線MN的斜率是否為定值呢?如果是,請(qǐng)你指出這個(gè)定值.(本小題不必寫出解答過(guò)程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,曲線C1,C2都是以原點(diǎn)O為對(duì)稱中心、離心率均為e的橢圓.線段MN是C1的短軸,是C2的長(zhǎng)軸,其中M點(diǎn)坐標(biāo)為(0,1),直線l:y=m,(0<m<1)與C1交于A,D兩點(diǎn),與C2交于B,C兩點(diǎn).
(Ⅰ)若m=
3
2
,AC=
5
4
,求橢圓C1,C2的方程;
(Ⅱ)若OB∥AN,求離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
.一曲線E過(guò)點(diǎn)C,動(dòng)點(diǎn)P在曲線E上運(yùn)動(dòng),且保持|PA|+|PB|的值不變,直線l經(jīng)過(guò)A與曲線E交于M,N兩點(diǎn).
(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求曲線E的方程;
(2)設(shè)直線l的斜率為k,若∠MBN為鈍角,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省高三下學(xué)期第二次聯(lián)考文數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,曲線AC的方程為,為估計(jì)橢圓的面積,現(xiàn)采用隨機(jī)模擬方式產(chǎn)生的200個(gè)點(diǎn),經(jīng)統(tǒng)計(jì),落在圖中陰影部分的點(diǎn)共157個(gè),則可估計(jì)橢圓的面積是          .(精確到0.01)

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案