(08年揚州中學) 已知定義在正實數(shù)集上的函數(shù),其中.設兩曲線,有公共點,且在該點處的切線相同.

(I)用表示,并求的最大值;

(II)求證:).

解析:(Ⅰ)設在公共點處的切線相同.

,由題意,

得:,或(舍去).

即有.令,則.于是當,即時,;

,即時,.故為增函數(shù),在為減函數(shù),于是的最大值為

(Ⅱ)設,

為減函數(shù),在為增函數(shù),

于是函數(shù)上的最小值是

故當時,有,即當時,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

 (08年揚州中學)  中,角A、B、C所對的邊分別為、、,已知

(1)求的值;(2)求的面積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 (08年揚州中學) 已知數(shù)列,中,,且是函數(shù)

的一個極值點.

(1)求數(shù)列的通項公式;

(2) 若點的坐標為(1,)(,過函數(shù)圖像上的點 的切線始終與平行(O 為原點),求證:當 時,不等式

對任意都成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 (08年揚州中學)

    

     (1)推導sin3α關于sinα的表達式;

(2)求sin18°的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 (08年揚州中學)已知函數(shù).

(1)求證:函數(shù)內(nèi)單調(diào)遞增;

(2)若關于的方程上有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 (08年揚州中學) (16分)

表示數(shù)列從第項到第項(共項)之和.

(1)在遞增數(shù)列中,是關于的方程為正整數(shù))的兩個根.求的通項公式并證明是等差數(shù)列;

(2)對(1)中的數(shù)列,判斷數(shù)列,,…,的類型;

(3)對一般的首項為,公差為的等差數(shù)列,提出與(2)類似的問題,你可以得到怎樣的結論,證明你的結論.

 

查看答案和解析>>

同步練習冊答案