已知數(shù)列{an}滿足a1=1,an+an+1=(
1
4
)n
(n∈N+),Sn=a1+4a2+42a3+…+4n-1an,類比課本中推導等比數(shù)列前n項和公式的方法,可求得5Sn-4nan=(  )
A.
n
2
B.nC.n+1D.n-1
由Sn=a1+a2•4+a3•42+…+an•4n-1
得4•sn=4•a1+a2•42+a3•43+…+an-1•4n-1+an•4n
①+②得:5sn=a1+4(a1+a2)+42•(a2+a3)+…+4n-1•(an-1+an)+an•4n
=a1+4×
1
4
+42•(
1
4
2+…+4 n-1•(
1
4
n-1+4n•an
=1+1+1+…+1+4n•an
=n+4n•an
所以5sn-4n•an=n.
故選B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

證明:已知,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

ABCD為直角梯形,∠BCD=∠CDA=90°,AD=2BC=2CD,P為平面ABCD外一點,且PB⊥BD.
(1)求證:PA⊥BD;
(2)若PC與CD不垂直,求證:PA≠PD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面內(nèi)圓具有性質(zhì)“經(jīng)過切點且垂直于切線的直線必過圓心”,將這一性質(zhì)類比到空間中球的性質(zhì)為“經(jīng)過切點且______”

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設面積為S的平面四邊形的第i條邊的邊長為ai(i=1,2,3,4),P是該四邊形內(nèi)一點,點P到第i條邊的距離記為hi,若
a1
1
=
a2
2
=
a3
3
=
a4
4
=k,則
4
i=1
(ihi=
2S
k
)
,類比上述結(jié)論,體積為V的三棱錐的第i個面的面積記為Si(i=1,2,3,4),Q是該三棱錐內(nèi)的一點,點Q到第i個面的距離記為di,若
S1
1
=
S2
2
=
S3
3
=
S4
4
=k,則
4
i=1
(idi)
等于______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下面給出了四個類比推理:
(1)由“若a,b,c∈R則(ab)c=a(bc)”類比推出“若a,b,c為三個向量則(
a
b
)•
c
=
a
•(
b
c
)”;
(2)“a,b為實數(shù),若a2+b2=0則a=b=0”類比推出“z1,z2為復數(shù),若
z21
+
z22
=0則z1=z2=0
”;
(3)“在平面內(nèi),三角形的兩邊之和大于第三邊”類比推出“在空間中,四面體的任意三個面的面積之和大于第四個面的面積”;
(4)“在平面內(nèi),過不在同一條直線上的三個點有且只有一個圓”類比推出“在空間中,過不在同一個平面上的四個點有且只有一個球”.
上述四個推理中,結(jié)論正確的個數(shù)有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

計算機是將信息轉(zhuǎn)換成二進制進行處理的,二進制即“逢二進一”,如(1101)2表示二進制數(shù),將它轉(zhuǎn)換成十進制形式是1×23+1×22+0×21+1×20=13,那么將二進制數(shù)(
111…1
16個1
)2
轉(zhuǎn)換成十進制形式是( 。
A.217-2B.216-2C.216-1D.215-1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

下面是按照一定規(guī)律畫出的一列“樹型”圖:

設第n個圖有an個樹枝,則an+1與an(n≥2)之間的關系是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若等差數(shù)列的前項和公式為,則=_______,首項=_______;公差=_______。

查看答案和解析>>

同步練習冊答案