(本小題共12分)已知數(shù)列是等差數(shù)列,公差為2,1,=11,n+1n+bn
(Ⅰ)若的值;  (Ⅱ)在(Ⅰ)條件下,求數(shù)列{}的前n項(xiàng)和.
(Ⅰ)="4"    (Ⅱ)  
(I)因?yàn)閿?shù)列是等差數(shù)列,公差為2

,與已知矛盾,所以3
當(dāng)時(shí), 所以="4 "
(II)由已知當(dāng)=4時(shí),


所以數(shù)列{an}的前n項(xiàng)和
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分,(Ⅰ)問5分,(Ⅱ)問7分)
設(shè)個(gè)不全相等的正數(shù)依次圍成一個(gè)圓圈。
(Ⅰ)若,且是公差為的等差數(shù)列,而是公比為的等比數(shù)列;數(shù)列的前項(xiàng)和滿足:,求通項(xiàng);
(Ⅱ)若每個(gè)數(shù)是其左右相鄰兩數(shù)平方的等比中項(xiàng),求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,且滿足,.
(Ⅰ)求的值;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)若正項(xiàng)數(shù)列滿足,
求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
.對(duì)于正項(xiàng)數(shù)列,其前
(1)求實(shí)數(shù)   (2)求數(shù)列的通項(xiàng)公式
(3)若大小,并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)集具有性質(zhì);對(duì)任意的
,兩數(shù)中至少有一個(gè)屬于
(Ⅰ)分別判斷數(shù)集是否具有性質(zhì),并說明理由;
(Ⅱ)證明:,且
(Ⅲ)證明:當(dāng)時(shí),成等比數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.如圖,把正三角形ABC分成有限個(gè)全等的小正三角形,且在每個(gè)小三角形的頂點(diǎn)上都放置一個(gè)非零實(shí)數(shù),使得任意兩個(gè)相鄰的小三角形組成的菱形的兩組相對(duì)頂點(diǎn)上實(shí)數(shù)的乘積相等.設(shè)點(diǎn)A為第一行,…,BC為第n行,記點(diǎn)A上的數(shù)為a,…第i行中第j個(gè)數(shù)為a(1≤j≤i).若a=
(1)求a
(2)試歸納出第n行中第m個(gè)數(shù)a表達(dá)式(用含n,m的式子表示,不必證明);
(3)記S…+a,證明:n≤++…+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某地區(qū)發(fā)生流行性病毒感染,居住在該地區(qū)的居民必須服用一種藥物預(yù)防,規(guī)定每人每天早晚八時(shí)各服一片,現(xiàn)知該藥片每片含藥量為220毫克,若人的腎臟每12小時(shí)從體內(nèi)濾出這種藥的60%,在體內(nèi)的殘留量超過386毫克,就將產(chǎn)生副作用.
(1) 某人上午八時(shí)第一次服藥,問到第二天上午八時(shí)服完藥時(shí),這種藥在他體內(nèi)還殘留多少?(2) 長(zhǎng)期服用的人這種藥會(huì)不會(huì)產(chǎn)生副作用?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)有2009個(gè)人站成一排,從第一名開始1至3報(bào)數(shù),凡報(bào)到3的就退出隊(duì)伍,其余的向前靠攏站成新的一排,再按此規(guī)則繼續(xù)進(jìn)行,直到第p次報(bào)數(shù)后只剩下3人為止,試問最后剩下3人最初在什么位置?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:等差數(shù)列{}中,=14,前10項(xiàng)和
(1)求
(2)將{}中的第2項(xiàng),第4項(xiàng),…,第項(xiàng)按原來的順序排成一個(gè)新數(shù)列,求此數(shù)列的前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊(cè)答案