已知F1, F2是橢圓x2+2y2=6的兩個焦點,點M在此橢圓上且∠F1MF2=60°,則△MF1F2的面積等于(  )
A.B.C.2D.
B
x2+2y2=6,即=1,所以a=,b=c=.設|MF1|=t,則在△MF1F2中,由余弦定理得(2c)2=(2a-t)2+t2-2t(2a-t)cos 60°,解得t=±,S△MF1F2|MF1||MF2|sin 60°=,即△MF1F2的面積為.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

動點到定點與到定直線,的距離之比為
(1)求的軌跡方程;
(2)過點的直線(與x軸不重合)與(1)中軌跡交于兩點、.探究是否存在一定點E(t,0),使得x軸上的任意一點(異于點E、F)到直線EM、EN的距離相等?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,梯形ABCD的底邊AB在y軸上,原點O為AB的中點,M為CD的中點.

(1)求點M的軌跡方程;
(2)過M作AB的垂線,垂足為N,若存在正常數(shù),使,且P點到A、B 的距離和為定值,求點P的軌跡E的方程;
(3)過的直線與軌跡E交于P、Q兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知中心在原點的橢圓C的右焦點為F(1,0),離心率等于,則C的方程是(  )
A.+=1B.+=1
C.+=1D.+=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設F1,F2分別是橢圓+=1的左、右焦點,P為橢圓上一點,M是F1P的中點,|OM|=3,則P點到橢圓左焦點距離為    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓C1=1與雙曲線C2=1共焦點,則橢圓C1的離心率e的取值范圍為(  )
A.B.C.(0,1)D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的一個焦點坐標是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中,已知△PAB的周長為8,且點A,B的坐標分別為(-1,0),(1,0).

(1)試求頂點P的軌跡C1的方程;
(2)若動點C(x1,y1)在軌跡C1上,試求動點Q的軌跡C2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C1y2=1,橢圓C2C1的長軸為短軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設O為坐標原點,點A,B分別在橢圓C1C2上,=2,求直線AB的方程.

查看答案和解析>>

同步練習冊答案