(2012•洛陽模擬)設變量x,y滿足約束條件:
x+y≥3
x-y≥-1
2x-y≤3
.則目標函數(shù)z=2x+3y的最小值為
7
7
分析:先根據(jù)條件畫出可行域,設z=2x+3y,再利用幾何意義求最值,將最小值轉(zhuǎn)化為y軸上的截距,只需求出直線z=2x+3y,過可行域內(nèi)的點B(1,1)時的最小值,從而得到z最小值即可.
解答:解:設變量x、y滿足約束條件
x+y≥3
x-y≥-1
2x-y≤3

在坐標系中畫出可行域△ABC,A(2,1),B(4,5),C(1,2),
當直線過A(2,1)時,目標函數(shù)z=2x+3y的最小,最小值為7.
故答案為:7.
點評:借助于平面區(qū)域特性,用幾何方法處理代數(shù)問題,體現(xiàn)了數(shù)形結(jié)合思想、化歸思想.線性規(guī)劃中的最優(yōu)解,通常是利用平移直線法確定.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•洛陽模擬)在△ABC中,角A、B、C所對的邊分別為a、b、c,
q
=(2a,1),
p
=(2b-c,cosC)且
p
q

求:
(I)求sinA的值;
(II)求三角函數(shù)式
-2cos2C
1+tanC
+1
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•洛陽模擬)若a=
ln26
4
,b=ln2ln3,c=
ln2π
4
,則a,b,c的大小關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•洛陽模擬)閱讀如圖的算法框圖,輸出的結(jié)果S的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•洛陽模擬)已知三棱錐S-ABC的所有頂點都在球O的球面上,SA⊥平面ABC,SA=2
3
,AB=1,AC=2,∠BAC=60°,則球O的表面積為
( 。

查看答案和解析>>

同步練習冊答案