【題目】已知二次函數(shù),且.

1)定義:對(duì)于函數(shù),若存在,使,則稱的一個(gè)不動(dòng)點(diǎn);

i)當(dāng),時(shí),求函數(shù)的不動(dòng)點(diǎn);

ii)對(duì)任意實(shí)數(shù)b,函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;

2)求的圖像在x軸上截得的線段長(zhǎng)的取值范圍.

【答案】1)(i,或.ii或者2

【解析】

(1)(i)要使得,直接計(jì)算出的值即可;

ii)理解題意,轉(zhuǎn)化為方程有兩個(gè)不等實(shí)數(shù)根,根據(jù)即可求出的取值范圍;

(2) 求圖像在x軸上截得的線段長(zhǎng),即求,利用韋達(dá)定理,即可求出取值范圍.

1.(i)依題意得,,

要使,則,

解得,或.

ii)根據(jù)不動(dòng)點(diǎn)定義,有,

即:,

對(duì)任意實(shí)數(shù),函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),

所以恒成立,

即:對(duì)于任意實(shí)數(shù)b,都有 恒成立,

所以 ,解得.

2)因?yàn)?/span>,則,.

所以

又因?yàn)?/span>,所以.

設(shè),則

,令

對(duì)稱軸為:,所以

所以,得出.

的圖像在軸上截得的線段長(zhǎng)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=x2+1,gx)=4x+1,的定義域都是集合A,函數(shù)fx)和gx)的值域分別為ST,

1)若A[12],求ST

2)若A[0,m]ST,求實(shí)數(shù)m的值

3)若對(duì)于集合A的任意一個(gè)數(shù)x的值都有fx)=gx),求集合A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的圖象與軸無(wú)交點(diǎn),求的取值范圍;

(2)若函數(shù)上存在零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),

)求證:平面BCD

)求點(diǎn)E到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求曲線的直角坐標(biāo)方程及曲線上的動(dòng)點(diǎn)到坐標(biāo)原點(diǎn)的距離的最大值;

(Ⅱ)若曲線與曲線相交于,兩點(diǎn),且與軸相交于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若運(yùn)行如圖所示的程序框圖,輸出的的值為127,則輸入的正整數(shù)的所有可能取值的個(gè)數(shù)為( )

A. 8 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)恰有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)設(shè)關(guān)于的方程的兩個(gè)不等實(shí)根,求證:(其中為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:

數(shù)列為等比數(shù)列數(shù)列為等比數(shù)列的充分不必要條件;

函數(shù)在區(qū)間上為增函數(shù)的充要條件;

直線與直線互相垂直的充要條件;

④設(shè),分別是三個(gè)內(nèi)角,,所對(duì)的邊,若,,則的必要不充分條件.其中,真命題的序號(hào)是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】市政府為了節(jié)約用水,調(diào)查了100位居民某年的月均用水量(單位:),頻數(shù)分布如下:

分組

頻數(shù)

4

8

15

22

25

14

6

4

2

(1)根據(jù)所給數(shù)據(jù)將頻率分布直圖補(bǔ)充完整(不必說明理由);

(2)根據(jù)頻率分布直方圖估計(jì)本市居民月均用水量的中位數(shù);

(3)根據(jù)頻率分布直方圖估計(jì)本市居民月均用水量的平均數(shù)(同一組數(shù)據(jù)由該組區(qū)間的中點(diǎn)值作為代表).

查看答案和解析>>

同步練習(xí)冊(cè)答案