已知拋物線的方程為y2=2px(p>0),且拋物線上各點(diǎn)與焦點(diǎn)距離的最小值為2,若點(diǎn)M在此拋物線上運(yùn)動(dòng),點(diǎn)N與點(diǎn)M關(guān)于點(diǎn)A(1,1)對(duì)稱,則點(diǎn)N的軌跡方程為( )
A.(x-2)2=-8(y-2)
B.(x-2)2=8(y-2)
C.(y-2)2=-8(x-2)
D.(y-2)2=8(x-2)
【答案】分析:由拋物線上各點(diǎn)與焦點(diǎn)距離的最小值為2,先確定拋物線方程,再利用中點(diǎn)坐標(biāo)公式尋找動(dòng)點(diǎn)之間坐標(biāo)關(guān)系,代入即可.
解答:解:由于拋物線上各點(diǎn)與焦點(diǎn)距離的最小值為2,∴,∴2p=8,∴拋物線的方程為y2=8x
設(shè)點(diǎn)N((x,y),則M(2-x,2-y),代入拋物線方程得:(y-2)2=-8(x-2),
故選C.
點(diǎn)評(píng):本題考查了拋物線的幾何形狀,考查代入法求軌跡方程,應(yīng)注意利用中點(diǎn)坐標(biāo)公式尋找動(dòng)點(diǎn)之間坐標(biāo)關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的方程為y2=2px(p>0),且拋物線上各點(diǎn)與焦點(diǎn)距離的最小值為2,若點(diǎn)M在此拋物線上運(yùn)動(dòng),點(diǎn)N與點(diǎn)M關(guān)于點(diǎn)A(1,1)對(duì)稱,則點(diǎn)N的軌跡方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的方程為y=-
1
4
x2,則它的焦點(diǎn)坐標(biāo)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的方程為y=2ax2,且過點(diǎn)(1,4),則焦點(diǎn)坐標(biāo)為(  )
A、(1,0)
B、(
1
16
,0)
C、(0,
1
16
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線的方程為y=-
1
4
x2,則它的焦點(diǎn)坐標(biāo)為( 。
A.(1,0)B.(0,1)C.(-1,0)D.(0,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年四川省雅安市高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知拋物線的方程為y=-x2,則它的焦點(diǎn)坐標(biāo)為( )
A.(1,0)
B.(0,1)
C.(-1,0)
D.(0,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案