精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標系,已知點R的極坐標為(2 , ),曲線C的參數方程為 (θ為參數).
(1)求點R的直角坐標,化曲線C的參數方程為普通方程;
(2)設P為曲線C上一動點,以PR為對角線的矩形PQRS的一邊垂直于極軸,求矩形PQRS周長的最小值,及此時P點的直角坐標.

【答案】
(1)解:點R的極坐標為(2 , ),直角坐標為(2,2);

曲線C的參數方程為 (θ為參數),普通方程為 =1;


(2)解:設P( cosθ,sinθ),則Q(2,sinθ),|PQ|=2﹣ cosθ,|QR|=2﹣sinθ,

∴矩形周長=2(2﹣ cosθ+2﹣sinθ)=8﹣4sin(θ+ ),

∴當θ= 時,周長的最小值為4,此時,點P的坐標為( ).


【解析】(1)由極坐標轉化為直角坐標,消去參數可得普通方程即可;(2)由參數方程,設出P的坐標,得到矩形的周長,根據三角函數的圖象和性質即可求出最值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】定義在R上的可導函數f(x),其導函數記為f'(x),滿足f(x)+f(2﹣x)=(x﹣1)2 , 且當x≤1時,恒有f'(x)+2<x.若 ,則實數m的取值范圍是(
A.(﹣∞,1]
B.
C.[1,+∞)
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知F1(﹣c,0)、F2(c、0)分別是橢圓G: + =1(0<b<a<3)的左、右焦點,點P(2, )是橢圓G上一點,且|PF1|﹣|PF2|=a.
(1)求橢圓G的方程;
(2)設直線l與橢圓G相交于A、B兩點,若 ,其中O為坐標原點,判斷O到直線l的距離是否為定值?若是,求出該定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圖1中,四邊形 ABCD是等腰梯形,AB∥CD,EF∥CD,DM⊥AB于M、交EF于點N,DN=3 ,MN= ,現將梯形ABCD沿EF折起,記折起后C、D為C'、D'且使D'M=2 ,如圖2示.
(Ⅰ)證明:D'M⊥平面ABFE;,
(Ⅱ)若圖1中,∠A=60°,求點M到平面AED'的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在銳角△ABC中,A,B,C角所對的邊分別為a,b,c,且 = sinC.
(1)求∠C;
(2)若 =2,求△ABC面積S的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ,且f(a)=﹣3,則f(6﹣a)=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=(x﹣1)ex ax2(a∈R).
(1)當a≤1時,求f(x)的單調區(qū)間;
(2)當x∈(0,+∞)時,y=f′(x)的圖象恒在y=ax3+x﹣(a﹣1)x的圖象上方,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥側面A1ABB1 , 且AA1=AB=2.

(1)求證:AB⊥BC;
(2)若直線AC與平面A1BC所成的角為 ,求銳二面角A﹣A1C﹣B的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在Z上的函數f(x),對任意x,y∈Z,都有f(x+y)+f(x﹣y)=4f(x)f(y)且f(1)= ,則f(0)+f(1)+f(2)+…+f(2017)=

查看答案和解析>>

同步練習冊答案