【題目】某高校數(shù)學(xué)與統(tǒng)計(jì)學(xué)院為了對(duì)2018年錄取的大一新生有針對(duì)性地進(jìn)行教學(xué).從大一新生中隨機(jī)抽取40名,對(duì)他們?cè)?018年高考的數(shù)學(xué)成績(jī)進(jìn)行調(diào)查,統(tǒng)計(jì)發(fā)現(xiàn)40名新生的數(shù)學(xué)分?jǐn)?shù)分布在內(nèi).當(dāng)時(shí),其頻率.
(Ⅰ)求的值;
(Ⅱ)請(qǐng)?jiān)诖痤}卡中畫(huà)出這40名新生高考數(shù)學(xué)分?jǐn)?shù)的頻率分布直方圖,并估計(jì)這40名新生的高考數(shù)學(xué)分?jǐn)?shù)的平均數(shù);
(Ⅲ)從成績(jī)?cè)?00~120分的學(xué)生中,用分層抽樣的方法從中抽取5名學(xué)生,再?gòu)倪@5名學(xué)生中隨機(jī)選兩人甲、乙,記甲、乙的成績(jī)分別為,求概率.
【答案】(Ⅰ)a=0.04;(Ⅱ)見(jiàn)解析;(Ⅲ).
【解析】
(Ⅰ)分別取n的值,將n代入函數(shù)的解析式,得到關(guān)于a的方程,解出即可;
(Ⅱ)畫(huà)出頻率分布直方圖,求出平均數(shù)即可;
(Ⅲ)按分層抽樣的方法從成績(jī)?cè)?00~120分的學(xué)生中,抽取[100,110)內(nèi)2人,[110,120)內(nèi)3人,記[100,110)內(nèi)2人為A,B,[110,120)內(nèi)3人,為a,b,c,從而求出滿(mǎn)足條件的概率即可.
(Ⅰ)由題意知,n的取值為10,11,12,13,14.
把n的取值分別代入,
可得(0.5﹣10a)+(0.55﹣10a)+(0.6﹣10a)+(0.65﹣10a)+(0.7﹣10a)=1.
解得a=0.04.
(Ⅱ)頻率分布直方圖如圖:
這40名新生的高考數(shù)學(xué)分?jǐn)?shù)的平均數(shù)為105×0.10+115×0.15+125×0.20+135×0.25+145×0.30=130.
(Ⅲ)這40名新生的高考數(shù)學(xué)分?jǐn)?shù)在[100,110)的頻率為0.1,
分?jǐn)?shù)在[110,120)的頻率為0.15,
頻率比0.1:0.15=2:3.
按分層抽樣的方法從成績(jī)?cè)?00~120分的學(xué)生中,抽取[100,110)內(nèi)2人,[110,120)內(nèi)3人,記[100,110)內(nèi)2人為A,B,[110,120)內(nèi)3人,為a,b,c.
從5名學(xué)生中隨機(jī)抽取2名學(xué)生的基本事件為AB,Aa,Ab,Ac,Ba,Bb,Bc,ab,ac,bc,共10個(gè),
甲、乙的成績(jī)分別為,滿(mǎn)足的有:Aa,Ab,Ac,Ba,Bb,Bc,共6個(gè).
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
某初級(jí)中學(xué)共有學(xué)生2000名,各年級(jí)男、女生人數(shù)如下表:
初一年級(jí) | 初二年級(jí) | 初三年級(jí) | |
女生 | 373 | x | y |
男生 | 377 | 370 | z |
已知在全校學(xué)生中隨機(jī)抽取1名,抽到初二年級(jí)女生的概率是0.19.
求x的值;
現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,問(wèn)應(yīng)在初三年級(jí)抽取多少名?
已知y245,z245,求初三年級(jí)中女生比男生多的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率為,且過(guò)點(diǎn),其右焦點(diǎn)為.點(diǎn)是橢圓上異于長(zhǎng)軸端點(diǎn)的任意一點(diǎn),連接并延長(zhǎng)交橢圓于點(diǎn),線(xiàn)段的中點(diǎn)為,為坐標(biāo)原點(diǎn),且直線(xiàn)與右準(zhǔn)線(xiàn)交于點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐如圖所示,其中, ,二面角的大小為.
(1)證明: ;
(2)若為線(xiàn)段的中點(diǎn),且, ,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿(mǎn)足 .
(1)證明: 是等比數(shù)列;
(2)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且過(guò)點(diǎn).
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)不過(guò)原點(diǎn)的直線(xiàn),與該橢圓交于兩點(diǎn),直線(xiàn)的斜率分別為,滿(mǎn)足.
(i)當(dāng)變化時(shí),是否為定值?若是,求出此定值,并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由;
(ii)求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為, 的極坐標(biāo)方程為.
(1)求直線(xiàn)與的交點(diǎn)的軌跡的方程;
(2)若曲線(xiàn)上存在4個(gè)點(diǎn)到直線(xiàn)的距離相等,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求證在上是單調(diào)遞減函數(shù);
(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的上頂點(diǎn)為,直線(xiàn)與該橢圓交于兩點(diǎn),且點(diǎn)恰為的垂心,則直線(xiàn)的方程為______ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com