判斷奇偶性,函數(shù)y=x-
2
3
,x∈(-∞,0)∪(0,+∞)是函數(shù)______.
由題意可得:函數(shù)的定義域?yàn)椋海?∞,0)∪(0,+∞),即關(guān)于原點(diǎn)對(duì)稱(chēng),
又因?yàn)楹瘮?shù)f(x)=y=x-
2
3
=
1
3x2
,
所以f(-x)=
1
3(-x)2
=
1
3x2
=f(x)

所以函數(shù)f(x)是偶函數(shù).
故答案為:偶函數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知f(x)是單調(diào)遞增的一次函數(shù),且f[f(x)]=4x+3.
(1)求f(x)的解析式;
(2)若集合A={x|f(x)•f(x+1)≤0且x∈Z},求集合A.
(3)若g(x)是定義在R的奇函數(shù),且x<0時(shí),g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)f(x)是連續(xù)的偶函數(shù),且當(dāng)x>0時(shí),f(x)是單調(diào)的函數(shù),則滿(mǎn)足f(x)=f(
x+3
x+4
)
的所有的x的和為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x3-ax,g(x)=
1
2
x2-lnx-
5
2

(1)若對(duì)一切x∈(0,+∞),有不等式f(x)≥2x•g(x)-x2+5x-3恒成立,求實(shí)數(shù)a的取值范圍;
(2)記G(x)=
1
2
x2-
5
2
-g(x)
,求證:G(x)>
1
ex
-
2
ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

定義在區(qū)間[-
2
3
π,π]上的函數(shù)y=f(x)的圖象關(guān)于直線(xiàn)x=
π
6
對(duì)稱(chēng),當(dāng)x∈[-
2
3
π,
π
6
]時(shí),函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),其圖象如圖所示.

(Ⅰ)求函數(shù)y=f(x)在[-
2
3
π,π]的表達(dá)式;
(Ⅱ)求方程f(x)=
2
的解;
(Ⅲ)是否存在常數(shù)m的值,使得|f(x)-m|<2在x∈[-
3
,π]上恒成立;若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列函數(shù)中,偶函數(shù)是( 。
A.f(x)=tanxB.f(x)=2x+2-xC.f(x)=
x
D.f(x)=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)則下列結(jié)論正確的是(  )
A.是偶函數(shù)B.是增函數(shù)
C.是周期函數(shù)D.的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053735866505.png" style="vertical-align:middle;" />

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(x)=,若f(x)=3,則x的值是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知

查看答案和解析>>

同步練習(xí)冊(cè)答案