若,,,為常數(shù),且
(Ⅰ)求對所有實(shí)數(shù)成立的充要條件(用表示);
(Ⅱ)設(shè)為兩實(shí)數(shù),且,若
求證:在區(qū)間上的單調(diào)增區(qū)間的長度和為(閉區(qū)間的長度定義為).
解:(Ⅰ)恒成立
;
(*)
因?yàn)?sub>,
所以,故只需(*)恒成立.
綜上所述,對所有實(shí)數(shù)成立的充要條件是. ………4分
(Ⅱ)1°如果,則的圖象關(guān)于直線對稱.因?yàn)?sub>,所以區(qū)間關(guān)于直線 對稱.
因?yàn)闇p區(qū)間為,增區(qū)間為,所以單調(diào)增區(qū)間的長度和為. ………6分
2°如果.
(1)當(dāng)時(shí).,
當(dāng),因?yàn)?sub>,所以,故=.
當(dāng),因?yàn)?sub>,所以,故=.
因?yàn)?sub>,所以,所以即
.
當(dāng)時(shí),令,則,所以,
當(dāng)時(shí),,所以=;
時(shí),,所以=.
在區(qū)間上的單調(diào)增區(qū)間的長度和
=. …………10分
(2)當(dāng)時(shí).,
當(dāng),因?yàn)?sub>,所以,故=.
當(dāng),因?yàn)?sub>,所以,故=.
因?yàn)?sub>,所以,所以.
當(dāng)時(shí),令,則,所以,
當(dāng)時(shí), ,所以=;
時(shí),,所以=;
在區(qū)間上的單調(diào)增區(qū)間的長度和
=.
綜上得在區(qū)間上的單調(diào)增區(qū)間的長度和為. …………14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x-m |
f(x) |
x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年北京市西城區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com