設函數(shù)f(x)=
13
x3-mx2+(m2-4)x,x∈R.已知函數(shù)f(x)有三個互不相同的零點0,α,β,且α<β.若對任意的x∈[α,β],都有f(x)≥f(1)恒成立,求實數(shù)m的取值范圍.
分析:本題利用導數(shù)來研究恒成立問題.先求出f(x)的導數(shù),根據(jù)f′(x)>0求得的區(qū)間是單調增區(qū)間,f′(x)<0求得的區(qū)間是單調減區(qū)間,利用單調性結合函數(shù)的圖象研究函數(shù)f(x)的零點分布問題,最后轉化為一個一元二次方程的根的分布問題.
解答:解:f′(x)=x2-2mx+(m2-4),令f′(x)=0,得x=m-2或x=m+2.
當x∈(-∞,m-2)時,f′(x)>0,f(x)在(-∞,m-2)上是增函數(shù);
當x∈(m-2,m+2)時,f′(x)<0,f(x)在(m-2,m+2)上是減函數(shù);
當x∈(m+2,+∞)時,f′(x)>0,f(x)在(m+2,+∞)上是增函數(shù).
因為函數(shù)f(x)有三個互不相同的零點0,α,β,且f(x)=
1
3
x[x2-3mx+3(m2-4)],
所以
(3m)2-12(m2-4)>0
3(m2-4)≠0

解得m∈(-4,-2)∪(-2,2)∪(2,4).
當m∈(-4,-2)時,m-2<m+2<0,所以α<m-2<β<m+2<0.
此時f(α)=0,f(1)>f(0)=0,與題意不合,故舍去;
當m∈(-2,2)時,m-2<0<m+2,所以α<m-2<0<m+2<β.
因為對任意的x∈[α,β],都有f(x)≥f(1)恒成立,所以α<1<β.
所以f(1)為函數(shù)f(x)在[α,β]上的最小值.
因為當x=m+2時,函數(shù)f(x)在[α,β]上取最小值,所以m+2=1,即m=-1;
當m∈(2,4)時,0<m-2<m+2,所以0<α<m-2<m+2<β.
因為對任意的x∈[α,β],都有f(x)≥f(1)恒成立,所以α<1<β.
所以f(1)為函數(shù)f(x)在[α,β]上的最小值.
因為當x=m+2時,函數(shù)f(x)在[α,β]上取最小值,
所以m+2=1,即m=-1(舍去).
綜上可知,m的取值范圍是{-1}.
點評:本小題主要考查函數(shù)單調性的應用、利用導數(shù)求閉區(qū)間上函數(shù)的最值、不等式的解法等基礎知識,考查運算求解能力,考查數(shù)形結合思想、化歸與轉化思想、分類討論思想.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•江西模擬)設函數(shù)f(x)=
(
1
3
)
x
-8(x<0)
x2+x-1(x≥0)
,若f(a)>1,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)定義在實數(shù)集上,它的圖象關于直線x=1對稱,且當x≥1時,f(x)=3x-1,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為D,若對任意x1,x2∈D,當x1<x2時,都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個條件:①f(0)=0;②f(
x
3
)=
1
2
f(x)
;③f(1-x)=2-f(x).則f(
1
3
)+f(
1
8
)
=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•成都一模)設函數(shù)f(x)=ax3+bx2+cx,記f(x)的導函數(shù)是f(x).
(I)當a=-1,b=c=-1時,求函數(shù)f(x)的單調區(qū)間;
(II)當c=-a2(a>0)時,若函數(shù)f(x)的兩個極值點x1、x2滿足|x1-x2|=2,求b的取值范圍;
(III)若a=-
1
3
令h(x)=|f(x)|,記h(x)在[-1,1]上的最大值為H,當b≥0,c∈R時,證明:H
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
1
3
 x3+bx2+cx(c<b<1)在x=1處取到一個極小值,且存在實數(shù)m,使f′(m)=-1,
①證明:-3<c≤-1;
②判斷f′(m-4)的正負并加以證明;
③若f(x)在x∈[m-4,1]上的最大值等于
-2c
3
,求f(x)在x∈[m-4,1]上的最小值.

查看答案和解析>>

同步練習冊答案