精英家教網 > 高中數學 > 題目詳情
下列說法正確的是( 。
A.垂直于同一平面的兩平面也平行
B.與兩條異面直線都相交的兩條直線一定是異面直線
C.過一點有且只有一條直線與已知直線垂直
D.垂直于同一直線的兩平面平行
垂直于同一個平面的兩個平面的位置關系不能確定,故A不正確,
與兩條異面直線都相交的直線如果是交于不同的四個點,一定異面,若交于三個點則共面,故B不正確,
過一點在空間中有無數條直線與已知直線垂直,故C不正確,
垂直于同一直線的兩個平面平行,正確,
故選D.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

如圖所示,是一個由三根細鐵桿PA,PB,PC組成的支架,三根鐵桿的兩兩夾角都是60°,一個半徑為1的球放在支架上,則球心到P的距離為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知E、F分別是三棱錐A-BCD的側棱AB、AD的中點,
求證:EF平面BCD.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設多面體ABCDEF,已知ABCDEF,平面ABCD⊥平面ADF,△ADF是以AD為斜邊的等腰直角三角形,若∠ADC=120°,AD=2,AB=2,CD=4,EF=3,G為BC的中點.
(1)求證:EG平面ADF;
(2)求直線DE與平面ABCD所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC=AA1,D,E,F分別為AB1,CC1,BC的中點.
(1)求證:DE平面ABC;
(2)求證:B1F⊥平面AEF.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面是邊長為2的菱形,∠BAD=60°,對角線AC與BD相交于點O,PO為四棱錐P-ABCD的高,且PO=
3
,E、F分別是BC、AP的中點.
(1)求證:EF平面PCD;
(2)求三棱錐F-PCD的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分別是AB,PD的中點,
又∠PDA為45°
(1)求證:AF平面PEC
(2)求證:平面PEC⊥平面PCD.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,AB=2,∠PDA=45°,E、F分別是AB、PC的中點.
(1)求證:EF平面PAD;
(2)求異面直線EF與CD所成的角;
(3)若AD=3,求點D到面PEF的距離.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖在平行六面體ABCD-A1B1C1D1中,E、F、G分別是A1D1、D1D、D1C1的中點.
求證:平面EFG平面AB1C.

查看答案和解析>>

同步練習冊答案