設(shè)函數(shù)
f(x)=lnx-ax+-1.(Ⅰ)當(dāng)a=1時(shí),過原點(diǎn)的直線與函數(shù)f(x)的圖象相切于點(diǎn)P,求點(diǎn)P的坐標(biāo);
(Ⅱ)當(dāng)0<a時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)a=時(shí),設(shè)函數(shù)g(x)=x2-2bx-,若對(duì)于x1∈(0,e],x2∈[0,1]使f(x1)≥g(x2)成立,求實(shí)數(shù)b的取值范圍.(e是自然對(duì)數(shù)的底,e<+1).
函數(shù)的定義域?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/5654/0021/0afaec64ea457555cbe4cfa2a5501f99/C/Image112.gif" width=50 HEIGHT=20>, (2分)(Ⅰ)設(shè)點(diǎn),當(dāng)時(shí),,則,,∴(3分) 解得,故點(diǎn) P的坐標(biāo)為(4分)(Ⅱ) ∵,∴ (5分)∴當(dāng),或時(shí),當(dāng)時(shí), 故當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為; 單調(diào)遞減區(qū)間為, (7分)(Ⅲ)當(dāng)時(shí),由(Ⅱ)可知函數(shù)在上是減函數(shù),在上為增函數(shù),在上為減函數(shù),且, ∵,又,∴, ∴,故函數(shù)在上的最小值為 (9分)若對(duì)于,使 ≥成立在上的最小值不大于 在上的最小值 (*)(10分)又, 、佼(dāng)時(shí),在上為增函數(shù),與 (*)矛盾②當(dāng)時(shí),,由及得, 、郛(dāng)時(shí),在上為減函數(shù),, 此時(shí) 綜上,的取值范圍是 (12分) |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:河北省衡水中學(xué)2012屆高三第四次調(diào)研考試數(shù)學(xué)理科試題 題型:044
設(shè)函數(shù)f(x)=ln(x+a)-x2,
(1)若a=0,求f(x)在(0,m](m>0)上的最大值g(m).
(2)若f(x)在區(qū)間[1,2]上為減函數(shù),求a的取值范圍.
(3)若直線y=x為函數(shù)f(x)的圖象的一條切線,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三第二學(xué)期第一次統(tǒng)考理科數(shù)學(xué) 題型:解答題
(本題滿分14分) 設(shè)函數(shù)f (x)=ln x+在 (0,) 內(nèi)有極值.
(Ⅰ) 求實(shí)數(shù)a的取值范圍;
(Ⅱ) 若x1∈(0,1),x2∈(1,+).求證:f (x2)-f (x1)>e+2-.
注:e是自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012屆浙江省高三調(diào)研測(cè)試?yán)砜茢?shù)學(xué)試卷 題型:解答題
(本題滿分14分) 設(shè)函數(shù)f (x)=ln x+在 (0,) 內(nèi)有極值.
(Ⅰ) 求實(shí)數(shù)a的取值范圍;
(Ⅱ) 若x1∈(0,1),x2∈(1,+).求證:f (x2)-f (x1)>e+2-.
注:e是自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年河北省高二下學(xué)期期末考試數(shù)學(xué)(理)試題 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)f (x)=ln(x+a)+x2.
(Ⅰ)若當(dāng)x=1時(shí),f (x)取得極值,求a的值,并討論f (x)的單調(diào)性;
(Ⅱ)若f (x)存在極值,求a的取值范圍,并證明所有極值之和大于ln.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f (x)=ln x+在 (0,) 內(nèi)有極值.
(Ⅰ) 求實(shí)數(shù)a的取值范圍;
(Ⅱ) 若x1∈(0,1),x2∈(1,+).求證:f (x2)-f (x1)>e+2-.
注:e是自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com