解答:解:(1)a取集合{0,1,2,3}中任一元素,
b取集合{0,1,2}中任一元素
∴a、b的取值情況有(0,0),(0,1)(0,2)
(1,0)(1,1)(1,2)(2,0),
(2,1),(2,2),(3,0)(3,1)(3,2)
其中第一個(gè)數(shù)表示a的取值,第二個(gè)數(shù)表示b的取值,基本事件總數(shù)為12.
設(shè)“方程f(x)=0有兩個(gè)不相等的實(shí)根”為事件A,
當(dāng)a≥0,b≥0時(shí)方程f(x)=0有兩個(gè)不相等實(shí)根的充要條件為a>b
當(dāng)a>b時(shí),a的取值有(1,0)(2,0)(2,1)(3,0)(3,1)(3,2)
即A包含的基本事件數(shù)為6.
∴方程f(x)=0有兩個(gè)不相等的實(shí)根的概率P(A)=
=
(2)∵a從區(qū)間[0,2]中任取一個(gè)數(shù),b從區(qū)間[0,3]中任取一個(gè)數(shù)
則試驗(yàn)的全部結(jié)果構(gòu)成區(qū)域Ω={(a,b)|0≤a≤2,0≤b≤3}這是一個(gè)矩形區(qū)域,其面積S
Ω=2×3=6
設(shè)“方程f(x)=0沒(méi)有實(shí)根”為事件B
則事件B構(gòu)成的區(qū)域?yàn)镸={(a,b)|0≤a≤2,0≤b≤3,a≤b}即圖中陰影部分的梯形,其面積SM=6-
×2×2=4
由幾何概型的概率計(jì)算公式可得方程f(x)=0沒(méi)有實(shí)根的概率P(B)=
=
=
.