(本小題滿分15分)
如圖,已知四棱錐中,平面平面,平面平面
上任意一點(diǎn),為菱形對(duì)角線的交點(diǎn).
(Ⅰ)證明:平面平面;
(Ⅱ)若,三棱錐的體積是四棱錐
的體積的,二面角的大小為,求
解:(Ⅰ)可證:,得平面平面
(Ⅱ)設(shè)三棱錐的高為,則
 ∴
過(guò)于點(diǎn),則為二面角的平面角,即
設(shè),則,在中,
,∴,又在中,面積法可得
     ∴
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如右下圖,在長(zhǎng)方體ABCD—A1B1C1D1中,已知AB=" 4," AD ="3," AA1= 2。 E、F分別是線段AB、BC上的點(diǎn),且EB= FB=1.
(1) 求二面角C—DE—C1的余弦值;
(2) 求直線EC1與FD1所成的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
一個(gè)四棱錐的三視圖如圖所示,E為側(cè)棱PC上一動(dòng)點(diǎn)。

(1)畫(huà)出該四棱錐的直觀圖,并指出幾何體的主要特征(高、底等).
(2)點(diǎn)在何處時(shí),面EBD,并求出此時(shí)二面角平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,直線平面,垂足為,正四面體的棱長(zhǎng)為4,在平面內(nèi),
是直線上的動(dòng)點(diǎn),則當(dāng)的距離為最大時(shí),正四面體在平面上的射影面
積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線上個(gè)點(diǎn)最多將直線分成段,平面上條直線最多將平面分成部分(規(guī)定:若),則類似地可以推算得到空間里個(gè)平面最多將空間分成  ▲  部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知、、分別是正方體的棱、、、的中點(diǎn)。
求證:①∥平面;
②平面∥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
如圖5所示:在邊長(zhǎng)為的正方形中,,且,,
分別交兩點(diǎn), 將正方形沿、折疊,使得重合,
構(gòu)成如圖6所示的三棱柱 .
( I )在底邊上有一點(diǎn),且::, 求證:平面 ;
( II )求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知平面ABC,,AC=CB=AD=2,E是DC的中點(diǎn),F(xiàn)是AB的中點(diǎn)。
(1)證明:;
(2)求二面角C—DB—A的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

高為的四棱錐-的底面是邊長(zhǎng)為1的正方形,點(diǎn)、、、均在半徑為1的同一球面上,則底面的中心與頂點(diǎn)之間的距離為_(kāi)_________________。

查看答案和解析>>

同步練習(xí)冊(cè)答案