在平面直角坐標系中,橢圓=1(a>b>0)的焦距為2c,以O(shè)為圓心,a為半徑的圓,過點作圓的兩切線互相垂直,則離心率e=( )
A.
B.2
C.
D.
【答案】分析:先根據(jù)題意畫出圖形,如圖,由切線PA、PB互相垂直,得出△OAP是等腰直角三角形,從而根據(jù)直角三角形的邊的關(guān)系建立a,c之間的關(guān)系式,最后解得離心率即可.
解答:解:法一:如圖,切線PA、PB互相垂直,
又半徑OA垂直于PA,
所以△OAP是等腰直角三角形,
=a.
解得e==
則離心率e=;
法二:關(guān)鍵橢圓的離心率小于1,
分析選項,只有A中的小于1,
故選A.
點評:本小題主要考圓與橢圓的綜合、橢圓的幾何性質(zhì)等基礎(chǔ)知識,解答的關(guān)鍵是運算求解能力,注意點是數(shù)形結(jié)合思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,以O(shè)為極點,x正半軸為極軸建立極坐標系,曲線C的極坐標方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點,則MN的中點P在平面直角坐標系中的坐標為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標軸平行又不經(jīng)過任何整點
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點
③直線l經(jīng)過無窮多個整點,當(dāng)且僅當(dāng)l經(jīng)過兩個不同的整點
④直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個整點的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系中,下列函數(shù)圖象關(guān)于原點對稱的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

同步練習(xí)冊答案