設(shè) 若-2≤x≤2,-2≤y≤2,則z的最小值為

(A)-4       (B)-2        (C)-1        (D) 0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=(x-a)2,g(x)=x,x∈R,a為實常數(shù).
(1)若a>0,設(shè)F(x)=
f(x)g(x)
,x≠0,用函數(shù)單調(diào)性的定義證明:函數(shù)F(x)在區(qū)間[a,+∞)上是增函數(shù);
(2)設(shè)關(guān)于x的方程f(x)=|g(x)|在R上恰好有三個不相等的實數(shù)解,求a的值所組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域為A,值域為B,如果存在函數(shù)x=g(t),使得函數(shù)y=f(g(t))的值域仍然是B,那么稱函數(shù)x=g(t)是函數(shù)f(x)的一個等值域變換.
(1)判斷下列函數(shù)x=g(t)是不是函數(shù)f(x)的一個等值域變換?說明你的理由.
①f(x)=2x+1,x∈R,x=g(t)=t2-2t+3,t∈R;
②f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R;
(2)設(shè)函數(shù)f(x)=log2(x2-x+1),g(t)=at2+2t+1,若函數(shù)x=g(t)是函數(shù)f(x)的一個等值域變換,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案