【題目】設(shè)向量 =(a1 , a2), =(b1 , b2),定義一種向量運算 =(a1b1 , a2b2),已知向量 =(2, ), =( ,0),點P(x′,y′)在y=sinx的圖象上運動.點Q(x,y)是函數(shù)y=f(x)圖象上的動點,且滿足 +n(其中O為坐標(biāo)原點),則函數(shù)y=f(x)的值域是(
A.[﹣ , ]
B.
C.[﹣1,1]
D.(﹣1,1)

【答案】A
【解析】解:∵向量 =(a1 , a2), =(b1 , b2),定義一種向量運算 =(a1b1 , a2b2),向量 =(2, ), =( ,0),點P(x′,y′)在y=sinx的圖象上運動.
點Q(x,y)是函數(shù)y=f(x)圖象上的動點,且滿足 +n(其中O為坐標(biāo)原點),
+n=(2x′, )+( ,0)
=(2x′+ , ),
,消去x′,得y= ,
∴y=f(x)的值域是[﹣ , ].
故選:A.
【考點精析】根據(jù)題目的已知條件,利用平面向量的基本定理及其意義的相關(guān)知識可以得到問題的答案,需要掌握如果、是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量,有且只有一對實數(shù)、,使

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校組織的“共筑中國夢”競賽活動中,甲、乙兩班各有6名選手參賽,在第一輪筆試環(huán)節(jié)中,評委將他們的筆試成績作為樣本數(shù)據(jù),繪制成如圖所示的莖葉圖,為了增加結(jié)果的神秘感,主持人故意沒有給出甲、乙兩班最后一位選手的成績,只是告訴大家,如果某位選手的成績高于90分(不含90分),則直接“晉級” (Ⅰ)求乙班總分超過甲班的概率
(Ⅱ)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分
①請你從平均分光和方差的角度來分析兩個班的選手的情況;
②主持人從甲乙兩班所有選手成績中分別隨機抽取2個,記抽取到“晉級”選手的總?cè)藬?shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (其中α為參數(shù)),以坐標(biāo)原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ. (Ⅰ)若A,B為曲線C1 , C2的公共點,求直線AB的斜率;
(Ⅱ)若A,B分別為曲線C1 , C2上的動點,當(dāng)|AB|取最大值時,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的圖象上相鄰兩個最高點的距離為π.若將函數(shù)f(x)的圖象向左平移 個單位長度后,所得圖象關(guān)于y軸對稱.則函數(shù)f(x)的解析式為(
A.f(x)=2sin(x+
B.f(x)=2sin(x+ )?
C.f(x)=2sin(2x+
D.f(x)=2sin(2x+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的長軸長為4,離心率為 ,右焦點為F.
(1)求橢圓C的方程;
(2)直線l與橢圓C相切于點P(不為橢圓C的左、右頂點),直線l與直線x=2交于點A,直線l與直線x=﹣2交于點B,請問∠AFB是否為定值?若不是,請說明理由;若是,請證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x),若在定義域內(nèi)存在x0 , 使得f(﹣x0)=﹣f(x0)成立,則稱x0為函數(shù)f(x)的局部對稱點.
(I)若a∈R且a≠0,求函數(shù)f(x)=ax2+x﹣a的“局部對稱點”;
(II)若函數(shù)f(x)=4x﹣m2x+1+m2﹣3在R上有局部對稱點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos(x+ ),則要得到其導(dǎo)函數(shù)y=f′(x)的圖象,只需將函數(shù)y=f(x)的圖象(
A.向右平移 個單位
B.向左平移 個單位
C.向右平移 個單位
D.向左平移 個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx﹣x+1(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對任意x∈(0,+∞),都有f(x)≤0,求實數(shù)a的取值范圍;
(Ⅲ)證明 (其中n∈N* , e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由于研究性學(xué)習(xí)的需要,中學(xué)生李華持續(xù)收集了手機“微信運動”團隊中特定20名成員每天行走的步數(shù),其中某一天的數(shù)據(jù)記錄如下: 5860 6520 7326 6798 7325
8430 8215 7453 7446 6754
7638 6834 6460 6830 9860
8753 9450 9860 7290 7850
對這20個數(shù)據(jù)按組距1000進(jìn)行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:
步數(shù)分組統(tǒng)計表(設(shè)步數(shù)為x)

組別

步數(shù)分組

頻數(shù)

A

5500≤x<6500

2

B

6500≤x<7500

10

C

7500≤x<8500

m

D

8500≤x<9500

2

E

9500≤x<10500

n

(Ⅰ)寫出m,n的值,若該“微信運動”團隊共有120人,請估計該團隊中一天行走步數(shù)不少于7500步的人數(shù);
(Ⅱ)記C組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v1 , ,E組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v2 , ,試分別比較v1與v2 , 的大。唬ㄖ恍鑼懗鼋Y(jié)論)
(Ⅲ)從上述A,E兩個組別的步數(shù)數(shù)據(jù)中任取2個數(shù)據(jù),求這2個數(shù)據(jù)步數(shù)差的絕對值大于3000步的概率.

查看答案和解析>>

同步練習(xí)冊答案