已知正方體棱長為1,點(diǎn)在上,且,點(diǎn)在平面內(nèi),動點(diǎn)到直線的距離與到點(diǎn)的距離的平方差等于1,則動點(diǎn)的軌跡是( )
A.圓 | B.拋物線 | C.雙曲線 | D.直線 |
B
解析試題分析:作PN⊥AD,則PN⊥面A1D1DA,作 NH⊥A1D1 ,N,H為垂足則由三垂線定理可得 PH⊥A1D1.
以AB,AD,AA1 為x軸,y軸,z軸,建立空間坐標(biāo)系,設(shè)P(x,y,0),由題意可得 M(,0,0).
再由PN2+NH2=PH2,PH2-PM2=1,可得 PN2+NH2-PM2=1,
即 x2 +1-[(x- )2+(y-0)2]=1,化簡可得y2= x- ,故答案為B
考點(diǎn):本題主要是考查點(diǎn)軌跡方程的求法。屬于中檔題.
點(diǎn)評:解決該試題的關(guān)鍵是得到 x2+1-[(x- )2+(y-0)2]=1,以AB,AD,AA1 為x軸,y軸,z軸,建立空間坐標(biāo)系,設(shè)P(x,y,0),由題意可得 M(,0,0),由題意可得(y2+1)-[(x- )2+(y-0)2]=1,化簡可得結(jié)果.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
利用斜二測畫法得到的
①三角形的直觀圖一定是三角形; ②正方形的直觀圖一定是菱形;
③等腰梯形的直觀圖可以是平行四邊形; ④菱形的直觀圖一定是菱形.
以上結(jié)論正確的是 ( )
A.①② | B.① | C.③④ | D.①②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,三棱柱A1B1C1—ABC中,側(cè)棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中點(diǎn),則下列敘述正確的是( ).
A.AE、B1C1為異面直線,且AE⊥B1C1 |
B.AC⊥平面A1B1BA |
C.CC1與B1E是異面直線 |
D.A1C1∥平面AB1E |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知a、b是異面直線,直線c//a,那么c與b ( )
A.一定是異面直線 | B.一定是相交直線 |
C.不可能是相交直線 | D.不可能是平行直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知三棱錐的所有頂點(diǎn)都在球O的表面上,三角形ABC是邊長為1的正三角形,SC為球O的直徑,且SC=2,則此三棱錐的體積為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
( )如圖,正四棱錐的所有棱長相等,E為PC的中點(diǎn),則異面直線BE與PA所成角的余弦值是
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖所示,一個空間幾何體的主視圖和左視圖都是邊長為1的正方形,俯視圖是一個直徑為1的圓,那么這個幾何體的全面積為 ( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,M、N、P為正方體AC1的棱AA1、A1B1、A1D1的中點(diǎn),現(xiàn)沿截面MNP切去錐體A1-MNP,則剩余幾何體的側(cè)視圖(左視圖)為( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com