練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖, 兩點分別在射線OS,OT上移動,
,O為坐標原點,動點P滿足.
(1)求的值
(2)求點P的軌跡C的方程,并說明它表示怎樣的曲線.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

直線與雙曲線的左支交于兩點,另一直線過點的中點,求直線軸上的截距的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)平面直角坐標系中,為坐標原點,給定兩點,點滿足   ,其中,且.  (1)求點的軌跡方程;(2)設(shè)點的軌跡與雙曲線交于兩點,且以為直徑的圓過原點,求證:為定值;(3)在(2)的條件下,若雙曲線的離心率不大于,求雙曲線實軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)
已知曲線C上的動點滿足到點的距離比到直線的距離小1.
求曲線C的方程;過點F的直線l與曲線C交于A、B兩點.(。┻^A、B兩點分別作拋物線的切線,設(shè)其交點為M,證明;(ⅱ)是否在y軸上存在定點Q,使得無論AB怎樣運動,都有?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若動點()在曲線上變化,則的最大值為(   )
A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分16分)本題共有2個小題,第1小題滿分8分,第2小題滿分8分.
已知雙曲線設(shè)過點的直線l的方向向量
(1)      當直線l與雙曲線C的一條漸近線m平行時,求直線l的方程及l(fā)與m的距離;
(2)      證明:當>時,在雙曲線C的右支上不存在點Q,使之到直線l的距離為.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若AB為拋物線y2=2px(p>0)的動弦,且|AB|=a(a>2p),則AB的中點M到y(tǒng)軸的最近距離是( 。
A.
a
2
B.
p
2
C.
a+p
2
D.
a-p
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線y2=2px(p>0)的焦點為F,直線L:2px+3y=p2。
⑴當p為何值時,焦點F到直線L的距離最大;
⑵在第⑴題下,又若拋物線與直線L相交于A、B兩點。求△ABF的面積。

查看答案和解析>>

同步練習冊答案