16、對于直角坐標平面內任意兩點A(x1,y1)、B(x2,y2),定義它們之間的一種“新距離”:|AB|=|x2-x1|+|y2-y1|.給出下列三個命題:
①若點C在線段AB上.則|AC|+|BC|=|AB|;
②在△ABC中,若∠C=90°,則|AC|2+|CB|2=|AB|2
③在△ABC中,|AC|+|CB|>|AB|.
其中的真命題為( 。
分析:對于①若點C在線段AB上,設C點坐標為(x0,y0)然后代入驗證顯然|AC|+|CB|=|AB|成立.成立故正確.
對于②平方后不能消除x0,y0,命題不成立;
對于③在△ABC中,用坐標表示|AC|+|CB|然后根據(jù)絕對值不等式可得到大于|AB|不成立,故可得到答案.
解答:解:對于直角坐標平面內的任意兩點A(x1,y1),B(x2,y2),
定義它們之間的一種“距離”:|AB|=|x2-x1|+|y2-y1|.
對于①若點C在線段AB上,設C點坐標為(x0,y0),x0在x1、x2之間,y0在y1、y2之間,
則|AC|+|CB|=|x0-x1|+|y0-y1|+|x2-x0|+|y2-y0|=|x2-x1|+|y2-y1|=|AB|成立,故①正確.
對于②平方后不能消除x0,y0,命題不成立;
對于③在△ABC中,|AC|+|CB|=|x0-x1|+|y0-y1|+|x2-x0|+|y2-y0|≥|(x0-x1)+(x2-x0)|+|(y0-y1)+(y2-y0)|=|x2-x1|+|y2-y1|=|AB|.③不一定成立
∴命題①成立,
故選:C.
點評:此題主要考查新定義的問題,對于此類型的題目需要認真分析題目的定義再求解,切記不可脫離題目要求.屬于中檔題目.本題的易錯點在于不等式:|a|+|b|≥|a+b|忘記等號也可以成立.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:松江區(qū)二模 題型:單選題

對于直角坐標平面內任意兩點A(x1,y1)、B(x2,y2),定義它們之間的一種“新距離”:|AB|=|x2-x1|+|y2-y1|.給出下列三個命題:
①若點C在線段AB上.則|AC|+|BC|=|AB|;
②在△ABC中,若∠C=90°,則|AC|2+|CB|2=|AB|2;
③在△ABC中,|AC|+|CB|>|AB|.
其中的真命題為( 。
A.①②③B.①②C.①D.②③

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年新課標高三(上)一輪復習數(shù)學專項訓練:邏輯與推理(解析版) 題型:選擇題

對于直角坐標平面內任意兩點A(x1,y1)、B(x2,y2),定義它們之間的一種“新距離”:|AB|=|x2-x1|+|y2-y1|.給出下列三個命題:
①若點C在線段AB上.則|AC|+|BC|=|AB|;
②在△ABC中,若∠C=90°,則|AC|2+|CB|2=|AB|2;
③在△ABC中,|AC|+|CB|>|AB|.
其中的真命題為( )
A.①②③
B.①②
C.①
D.②③

查看答案和解析>>

科目:高中數(shù)學 來源:2009年上海市松江區(qū)高考數(shù)學二模試卷(理科)(解析版) 題型:選擇題

對于直角坐標平面內任意兩點A(x1,y1)、B(x2,y2),定義它們之間的一種“新距離”:|AB|=|x2-x1|+|y2-y1|.給出下列三個命題:
①若點C在線段AB上.則|AC|+|BC|=|AB|;
②在△ABC中,若∠C=90°,則|AC|2+|CB|2=|AB|2;
③在△ABC中,|AC|+|CB|>|AB|.
其中的真命題為( )
A.①②③
B.①②
C.①
D.②③

查看答案和解析>>

科目:高中數(shù)學 來源:2009年上海市松江區(qū)高考數(shù)學二模試卷(文科)(解析版) 題型:選擇題

對于直角坐標平面內任意兩點A(x1,y1)、B(x2,y2),定義它們之間的一種“新距離”:|AB|=|x2-x1|+|y2-y1|.給出下列三個命題:
①若點C在線段AB上.則|AC|+|BC|=|AB|;
②在△ABC中,若∠C=90°,則|AC|2+|CB|2=|AB|2;
③在△ABC中,|AC|+|CB|>|AB|.
其中的真命題為( )
A.①②③
B.①②
C.①
D.②③

查看答案和解析>>

同步練習冊答案