精英家教網(wǎng)如圖,已知正方形ABCD和矩形ACEF,EC⊥平面ABCD.AB=1,AF=1,
(1)求證:AD⊥BF;
(2)求三棱錐C-BFD的體積.
分析:(1)證明直線與直線,先證明直線與平面垂直即要找到兩條相交直線與之都垂直.在矩形ACEF中,EC∥AF,而EC⊥平面ABCD,故AF⊥面ABCD,得AF⊥AD,在正方形ABCD中AD⊥AB,所以AD⊥面AFB,可得AD⊥BF.
(2)三棱錐C-BFD的體積即三棱錐F-ABC的體積,其高為AF,底為面ABC,代入體積公式即可的其體積.
解答:解:(1)因為AF∥CE,
所以AF⊥ABCD,
所以AF⊥DA,又DA⊥AB,
所以DA⊥平面ABF,
所以AD⊥BF;
(2)因為VC-DBF=VF-CDB=
1
3
×
1
2
×1×1×1=
1
6
點評:本小題主要考查空間線面關(guān)系、幾何體的體積等知識,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力,是個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1,M是線段EF的中點.
(Ⅰ)求證AM∥平面BDE;
(Ⅱ)求二面角A-DF-B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的邊長為1,過正方形中心O的直線MN分別交正方形的邊AB,CD于M,N,則當(dāng)
MN
BN
最小時,CN=
5
-1
2
5
-1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD和梯形ACEF所在平面互相垂直,AB=2,AF=
2
,CE=2
2
,CE∥AF,AC⊥CE,
ME
=2
FM

(I)求證:CM∥平面BDF;
(II)求異面直線CM與FD所成角的余弦值的大。
(III)求二面角A-DF-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1

(1)求二面角A-DF-B的大。
(2)在線段AC上找一點P,使PF與AD所成的角為60°,試確定點P的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳二模)如圖,已知正方形ABCD在水平面上的正投影(投影線垂直于投影面)是四邊形A′B′C′D′,其中A與A'重合,且BB′<DD′<CC′.
(1)證明AD′∥平面BB′C′C,并指出四邊形AB′C′D′的形狀;
(2)如果四邊形中AB′C′D′中,AD′=
2
,AB′=
5
,正方形的邊長為
6
,求平面ABCD與平面AB′C′D′所成的銳二面角θ的余弦值.

查看答案和解析>>

同步練習(xí)冊答案