已知橢圓的左右焦點分別是,直線 與橢圓交于兩點且當(dāng)時,M是橢圓的上頂點,且△的周長為6.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點為A,直線與直線:分別相交于點,問當(dāng)變化時,以線段為直徑的圓被軸截得的弦長是否為定值?若是,求出這個定值,若不是,說明理由.

解:(1)當(dāng)時,直線的傾斜角為,所以:…………3分

解得:, ………………………………………………………5分

所以橢圓方程是:;………………………………………………………6分

(1)當(dāng)時,直線的方程為:,此時,點的坐標(biāo)分別是,

點坐標(biāo)是,由圖可以得到兩點坐標(biāo)分別是,以為直徑的

圓過右焦點,被軸截得的弦長為6,猜測當(dāng)變化時,以為直徑的圓恒過焦點,被

軸截得的弦長為定值6,…………………………………………………………………8分

證明如下:設(shè)點點的坐標(biāo)分別是,則直線的方程是:,

所以點的坐標(biāo)是,同理,點的坐標(biāo)是,…………………9分

由方程組得到:,

所以:,……………………………………11分

從而:

=0,

所以:以為直徑的圓一定過右焦點,被軸截得的弦長為定值6!13分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的左右焦點分別是,直線與橢圓交于兩點,.當(dāng)時,M恰為橢圓的上頂點,此時△的周長為6.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)橢圓的左頂點為A,直線與直線分別相交于點,問當(dāng)

變化時,以線段為直徑的圓被軸截得的弦長是否為定值?若是,求出這個定值,

若不是,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓數(shù)學(xué)公式的左右焦點分別是F1,F(xiàn)2,過右焦點F2且斜率為k的直線與橢圓交于A,B兩點.
(1)若k=1,求|AB|的長度、△ABF1的周長;
(2)若數(shù)學(xué)公式,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左右焦點分別是,直線與橢圓交于兩點且當(dāng)時,M是橢圓的上頂點,且△的周長為6.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點為A,直線與直線:

分別相交于點,問當(dāng)變化時,以線段為直徑的圓

軸截得的弦長是否為定值?若是,求出這個定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左右焦點分別是,直線與橢圓交于兩點且當(dāng)時,M是橢圓的上頂點,且△的周長為6.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點為A,直線與直線:

分別相交于點,問當(dāng)變化時,以線段為直徑的圓

軸截得的弦長是否為定值?若是,求出這個定值,若不是,

說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左右焦點分別是,直線與橢圓交于兩點且當(dāng)時,M是橢圓的上頂點,且△的周長為6.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點為A,直線與直線:

分別相交于點,問當(dāng)變化時,以線段為直徑的圓

軸截得的弦長是否為定值?若是,求出這個定值,若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案