精英家教網 > 高中數學 > 題目詳情
已知直線l的參數方程:
x=t
y=1+2t
(t為參數)和圓C的極坐標方程:ρ=2
2
sin(θ+
π
4
)

(Ⅰ)將直線l的參數方程化為普通方程,圓C的極坐標方程化為直角坐標方程;
(Ⅱ)判斷直線l和圓C的位置關系.
分析:(Ⅰ)將直線l的參數方程的參數t消去即可求出直線的普通方程,利用極坐標轉化成直角坐標的轉換公式求出圓的直角坐標方程;
(Ⅱ)欲判斷直線l和圓C的位置關系,只需求圓心到直線的距離與半徑進行比較即可,根據點到線的距離公式求出圓心到直線的距離然后與半徑比較.
解答:解:(Ⅰ)消去參數t,得直線l的普通方程為y=2x+1,
ρ=2
2
sin(θ+
π
4
)
,即ρ=2(sinθ+cosθ),
兩邊同乘以ρ得ρ2=2(ρsinθ+ρcosθ),
得⊙C的直角坐標方程為(x-1)2+(y-1)2=2;
(Ⅱ)圓心C到直線l的距離d=
|2-1+1|
22+12
=
2
5
5
2
,
所以直線l和⊙C相交.
點評:本題主要考查了簡單曲線的極坐標方程,以及直線的參數方程和直線與圓的位置關系的判定,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

C選修4-4:坐標系與參數方程已知直線l的參數方程:
x=2t
y=1+4t
(t為參數),曲線C的極坐標方程:ρ=2
2
sin(θ+
π
4
),求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數學 來源: 題型:

極坐標與參數方程:
已知直線l的參數方程是:
x=2t
y=1+4t
(t為參數),圓C的極坐標方程是:ρ=2
2
sin(θ+
π
4
),試判斷直線l與圓C的位置關系.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l的參數方程為
x=
1
2
t
y=2+
3
2
t
(t為參數),曲線C的極坐標方程是ρ=
sinθ
1-sin2θ
以極點為原點,極軸為x軸正方向建立直角坐標系,點M(0,2),直線l與曲線C交于A,B兩點.
(1)寫出直線l的普通方程與曲線C的直角坐標方程;
(2)線段MA,MB長度分別記|MA|,|MB|,求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(坐標系與參數方程選做題) 已知直線l的參數方程為
x=
2
2
t
y=1+
2
2
t
(t為參數),圓C的參數方程為
x=cosθ+2
y=sinθ
(θ為參數),則圓心C到直線l的距離為
3
2
2
3
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•香洲區(qū)模擬)已知直線L的參數方程為:
x=t
y=a+
3
t
(t為參數),圓C的參數方程為:
x=sinθ
y=cosθ+1
(θ為參數).若直線L與圓C有公共點,則常數a的取值范圍是
[-1,3]
[-1,3]

查看答案和解析>>

同步練習冊答案