【題目】已知橢圓的離心率為,短軸長為4.

1)求橢圓C的標(biāo)準(zhǔn)方程.

2)設(shè)直線l過點(diǎn)(2,0)且與橢圓C相交于不同的兩點(diǎn)A、B,直線x軸交于點(diǎn)D,E是直線上異于D的任意一點(diǎn),當(dāng)時(shí),直線BE是否恒過x軸上的定點(diǎn)?若過,求出定點(diǎn)坐標(biāo),若不過,請說明理由。

【答案】(1)(2)直線BE恒過x軸上的定點(diǎn),詳見解析

【解析】

(1)利用離心率,短軸長4,列關(guān)于的方程組,解方程即可求得橢圓C的標(biāo)準(zhǔn)方程。

(2)當(dāng)斜率不存在時(shí),可得直線BE過定點(diǎn),當(dāng)斜率存在時(shí),,設(shè)出的坐標(biāo),求出直線BE的方程,求出與x軸的交點(diǎn)表達(dá)式,即證,

根據(jù)的特點(diǎn),將直線l和橢圓聯(lián)立,得到,代入,可得式子成立,即證明直線BE恒過x軸上的定點(diǎn)

解:(1)由題意得。解得,

所以橢圓C的標(biāo)準(zhǔn)方程為

2)直線BE恒過x軸上的定點(diǎn)

證明如下:

因?yàn)?/span>.所以,

因?yàn)橹本l過點(diǎn)

①當(dāng)直線l的斜率不存在時(shí),則直線l的方程為,

不妨設(shè)

此時(shí),直線BE的方程為,

所以直線BE過定點(diǎn);

②直線l的斜率存在且不為零時(shí),設(shè)直線l的方程為,,所以.

直線,令,得

,又

所以

即證

即證

聯(lián)立,x,

因?yàn)辄c(diǎn)C內(nèi),所以直線lC恒有兩個(gè)交點(diǎn),

由韋達(dá)定理得,

代入(*)中得

所以直線BE過定點(diǎn),

綜上所述,直線BE恒過x軸上的定點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)設(shè),求的最小值;

(2)若曲線僅有一個(gè)交點(diǎn),證明:曲線在點(diǎn)處有相同的切線,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,且,平面 平面,,點(diǎn)為線段的中點(diǎn),點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn).

(Ⅰ)求證:平面 平面

(Ⅱ)設(shè)二面角的平面角為,試判斷在線段上是否存在這樣的點(diǎn),使得,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某冰糖橙,甜橙的一種,云南著名特產(chǎn),以味甜皮薄著稱。該橙按照等級可分為四類:珍品、特級、優(yōu)級和一級(每箱5kg.某采購商打算采購一批橙子銷往省外,并從采購的這批橙子中隨機(jī)抽取100箱,利用橙子的等級分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下表:

等級

珍品

特級

優(yōu)級

一級

箱數(shù)

40

30

10

20

售價(jià)(元/kg

36

30

24

18

1)試計(jì)算樣本中的100箱不同等級橙子的平均價(jià)格;

2)按照分層抽樣的方法,從這100個(gè)樣本中抽取10箱,試計(jì)算各等級抽到的箱數(shù);

3)若在(2)抽取的特級品和一級品的箱子上均編上號放在一起再從中抽取2箱,求抽取的2箱中兩種等級均有的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線,(為參數(shù)),將曲線上的所有點(diǎn)的橫坐標(biāo)縮短為原來的,縱坐標(biāo)縮短為原來的后得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為。

1)求曲線的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;

2)設(shè)直線l與曲線交于不同的兩點(diǎn)A,B,點(diǎn)M為拋物線的焦點(diǎn),求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù)=1,2,…,6),如表所示:

試銷單價(jià)(元)

4

5

6

7

8

9

產(chǎn)品銷量(件)

q

84

83

80

75

68

已知

(Ⅰ)求出的值;

(Ⅱ)已知變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(jià)(元)的線性回歸方程;

(參考公式:線性回歸方程中,的最小二乘估計(jì)分別為,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. 設(shè)是實(shí)數(shù),若方程表示雙曲線,則.

B. 為真命題”是“為真命題”的充分不必要條件.

C. 命題“,使得”的否定是:“,”.

D. 命題“若的極值點(diǎn),則”的逆命題是真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC的內(nèi)角A,BC所對應(yīng)的邊分別為a,bc

)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sinA+C);

)若a,bc成等比數(shù)列,求cosB的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓C:(a>b>0)的離心率為,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為不過原點(diǎn)O的直線l與C相交于A,B兩點(diǎn),且線段AB被直線OP平分

(Ⅰ)求橢圓C的方程;

() 求ABP的面積取最大時(shí)直線l的方程

查看答案和解析>>

同步練習(xí)冊答案