【題目】已知橢圓的離心率為,短軸長為4.
(1)求橢圓C的標(biāo)準(zhǔn)方程.
(2)設(shè)直線l過點(diǎn)(2,0)且與橢圓C相交于不同的兩點(diǎn)A、B,直線與x軸交于點(diǎn)D,E是直線上異于D的任意一點(diǎn),當(dāng)時(shí),直線BE是否恒過x軸上的定點(diǎn)?若過,求出定點(diǎn)坐標(biāo),若不過,請說明理由。
【答案】(1)(2)直線BE恒過x軸上的定點(diǎn),詳見解析
【解析】
(1)利用離心率,短軸長4,列關(guān)于的方程組,解方程即可求得橢圓C的標(biāo)準(zhǔn)方程。
(2)當(dāng)斜率不存在時(shí),可得直線BE過定點(diǎn),當(dāng)斜率存在時(shí),,設(shè)出的坐標(biāo),求出直線BE的方程,求出與x軸的交點(diǎn)表達(dá)式,即證,
根據(jù)的特點(diǎn),將直線l和橢圓聯(lián)立,得到,代入,可得式子成立,即證明直線BE恒過x軸上的定點(diǎn)。
解:(1)由題意得。解得,
所以橢圓C的標(biāo)準(zhǔn)方程為
(2)直線BE恒過x軸上的定點(diǎn)
證明如下:
因?yàn)?/span>.所以,
因?yàn)橹本l過點(diǎn)
①當(dāng)直線l的斜率不存在時(shí),則直線l的方程為,
不妨設(shè)則
此時(shí),直線BE的方程為,
所以直線BE過定點(diǎn);
②直線l的斜率存在且不為零時(shí),設(shè)直線l的方程為,,所以.
直線,令,得
即,又
所以
即證
即證
聯(lián)立,消x得,
因?yàn)辄c(diǎn)在C內(nèi),所以直線l與C恒有兩個(gè)交點(diǎn),
由韋達(dá)定理得,
代入(*)中得
所以直線BE過定點(diǎn),
綜上所述,直線BE恒過x軸上的定點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)設(shè),求的最小值;
(2)若曲線與僅有一個(gè)交點(diǎn),證明:曲線與在點(diǎn)處有相同的切線,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是正方形,且,平面 平面,,點(diǎn)為線段的中點(diǎn),點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn).
(Ⅰ)求證:平面 平面;
(Ⅱ)設(shè)二面角的平面角為,試判斷在線段上是否存在這樣的點(diǎn),使得,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某冰糖橙,甜橙的一種,云南著名特產(chǎn),以味甜皮薄著稱。該橙按照等級可分為四類:珍品、特級、優(yōu)級和一級(每箱5kg).某采購商打算采購一批橙子銷往省外,并從采購的這批橙子中隨機(jī)抽取100箱,利用橙子的等級分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下表:
等級 | 珍品 | 特級 | 優(yōu)級 | 一級 |
箱數(shù) | 40 | 30 | 10 | 20 |
售價(jià)(元/kg) | 36 | 30 | 24 | 18 |
(1)試計(jì)算樣本中的100箱不同等級橙子的平均價(jià)格;
(2)按照分層抽樣的方法,從這100個(gè)樣本中抽取10箱,試計(jì)算各等級抽到的箱數(shù);
(3)若在(2)抽取的特級品和一級品的箱子上均編上號放在一起再從中抽取2箱,求抽取的2箱中兩種等級均有的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線:,(為參數(shù)),將曲線上的所有點(diǎn)的橫坐標(biāo)縮短為原來的,縱坐標(biāo)縮短為原來的后得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為。
(1)求曲線的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線交于不同的兩點(diǎn)A,B,點(diǎn)M為拋物線的焦點(diǎn),求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù)(=1,2,…,6),如表所示:
試銷單價(jià)(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量(件) | q | 84 | 83 | 80 | 75 | 68 |
已知.
(Ⅰ)求出的值;
(Ⅱ)已知變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(jià)(元)的線性回歸方程;
(參考公式:線性回歸方程中,的最小二乘估計(jì)分別為,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 設(shè)是實(shí)數(shù),若方程表示雙曲線,則.
B. “為真命題”是“為真命題”的充分不必要條件.
C. 命題“,使得”的否定是:“,”.
D. 命題“若為的極值點(diǎn),則”的逆命題是真命題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c.
(Ⅰ)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比數(shù)列,求cosB的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓C:(a>b>0)的離心率為,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為.不過原點(diǎn)O的直線l與C相交于A,B兩點(diǎn),且線段AB被直線OP平分.
(Ⅰ)求橢圓C的方程;
(Ⅱ) 求ABP的面積取最大時(shí)直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com