(本小題滿分14分)已知橢圓的離心率. 直線()與曲線交于不同的兩點,以線段為直徑作圓,圓心為.
(1) 求橢圓的方程;
(2) 若圓與軸相交于不同的兩點,求的面積的最大值.
【解析】本小題主要考查橢圓、圓、直線與圓的位置關(guān)系等知識, 考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化、函數(shù)與方程的數(shù)學(xué)思想方法,以及推理論證能力、運算求解能力和創(chuàng)新意識.
(1)解:∵橢圓的離心率,
∴. …… 2分
解得.
∴ 橢圓的方程為. …… 4分
(2)解法1:依題意,圓心為.
由 得.
∴ 圓的半徑為. …… 6分
∵ 圓與軸相交于不同的兩點,且圓心到軸的距離,
∴ ,即.
∴ 弦長. …… 8分
∴的面積 …… 9分
. …… 12分
當(dāng)且僅當(dāng),即時,等號成立.
∴ 的面積的最大值為. …… 14分
解法2:依題意,圓心為.
由 得.
∴ 圓的半徑為. …… 6分
∴ 圓的方程為.
∵ 圓與軸相交于不同的兩點,且圓心到軸的距離,
∴ ,即.
在圓的方程中,令,得,
∴ 弦長. …… 8分
∴的面積 …… 9分
. ……12分
當(dāng)且僅當(dāng),即時,等號成立.
∴ 的面積的最大值為. …… 14分
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com