如圖:D、E分別是正三棱柱ABC-A1B1C1的棱AA1、B1C1的中點(diǎn),且棱AA1=8,AB=4,
(1)求證:A1E∥平面BDC1
(2)求二面角A1-BC1-B1的大。

證明:在線(xiàn)段BC1上取中點(diǎn)F,連接EF、DF
則由題意得EF∥DA1,且EF=DA1,
∴四邊形EFDA1是平行四邊形
∴A1E∥FD,又A1E?平面BDC1,F(xiàn)D?平面BDC1
∴A1E∥平面BDC1 …(6分)
(2)由A1E⊥B1C1,A1E⊥CC1,得A1E⊥平面CBB1C1,過(guò)點(diǎn)E作
EH⊥BC1于H,連接A1H,則∠A1HE為二面角A1-BC1-B1的平面角 …(8分)
在Rt△BB1C1中,由BB1=8,B1C1=4,得BC1邊上的高為,∴EH=,
又A1E=2,∴tan∠A1HE=
∴二面角A1-BC1-B1為arctan…(12分)
分析:(1)欲證線(xiàn)面平行,關(guān)鍵是證線(xiàn)線(xiàn)平行.在線(xiàn)段BC1上取中點(diǎn)F,連接EF、DF,可得EF∥DA1,且EF=DA1,所以四邊形EFDA1是平行四邊形,所以A1E∥FD,再結(jié)合線(xiàn)面平行的判定定理可得線(xiàn)面平行.
(2)先作出二面角A1-BC1-B1的平面角:A1E⊥B1C1,A1E⊥CC1,得A1E⊥平面CBB1C1,過(guò)點(diǎn)E作EH⊥BC1于H,連接A1H,則∠A1HE為二面角A1-BC1-B1的平面角,再分別求出EH,A1E的長(zhǎng),利用正切函數(shù)可求.
點(diǎn)評(píng):本題的考點(diǎn)是與二面角有關(guān)的立體幾何綜合問(wèn)題.主要考查用線(xiàn)面平行的判定定理證明線(xiàn)面平行,以及求二面角的平面角,而空間角解決的關(guān)鍵是做角,由圖形的結(jié)構(gòu)及題設(shè)條件正確作出平面角來(lái),是求角的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,D、E分別是正三棱柱ABC-A1B1C1的棱AA1、BB1的中點(diǎn),且棱AA1=8,AB=4.
(Ⅰ)求證:A1E∥平面BDC1
(Ⅱ)在棱AA1上是否存在一點(diǎn)M,使二面角M-BC1-B1的大小為60°,若存在,求AM的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:D、E分別是正三棱柱ABC-A1B1C1的棱AA1、B1C1的中點(diǎn),且棱AA1=8,AB=4,
(1)求證:A1E∥平面BDC1
(2)求BD與平面CC1B1B所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•孝感模擬)如圖:D、E分別是正三棱柱ABC-A1B1C1的棱AA1、B1C1的中點(diǎn),且棱AA1=8,AB=4,
(1)求證:A1E∥平面BDC1
(2)求二面角A1-BC1-B1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,D、E分別是正三棱柱ABC-A1B1C1的棱AA1、BB1的中點(diǎn),且棱AA1=8,AB=4.
(Ⅰ)求證:A1E∥平面BDC1;
(Ⅱ)在棱AA1上是否存在一點(diǎn)M,使二面角M-BC1-B1的大小為60°,若存在,求AM的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省聊城市高三(上)模塊數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,D、E分別是正三棱柱ABC-A1B1C1的棱AA1、BB1的中點(diǎn),且棱AA1=8,AB=4.
(Ⅰ)求證:A1E∥平面BDC1;
(Ⅱ)在棱AA1上是否存在一點(diǎn)M,使二面角M-BC1-B1的大小為60°,若存在,求AM的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案