已知數(shù)列的前項和是,且.求數(shù)列的通項公式;

解析試題分析:由題意根據(jù)數(shù)列前項和定義,盡可能對條件進行挖掘利用,因為,所以由條件可求出數(shù)列的首項,當時,有,由條件可得,即,從而發(fā)現(xiàn)數(shù)列是以首項為,公比為的等比數(shù)列,再由等比數(shù)列的通項公式可求得數(shù)列的通項公式.
試題解析:當時,,∴;      2分
時,          4分
兩式相減得,即,又,∴    8分
∴數(shù)列是以為首項,為公比的等比數(shù)列.      10分
      12分
考點:1.數(shù)列前項和定義;2.等比數(shù)列.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

在數(shù)列中,,設(shè)
(1)證明:數(shù)列是等比數(shù)列;
(2)求數(shù)列的前項和;
(3)若為數(shù)列的前項和,求不超過的最大的整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)為等比數(shù)列,為其前項和,已知.
(1)求的通項公式;
(2)求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列滿足:
(1)求的值;
(2)求證:數(shù)列是等比數(shù)列;
(3)令),如果對任意,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(1)若是常數(shù),問當滿足什么條件時,函數(shù)有最大值,并求出取最大值時的值;
(2)是否存在實數(shù)對同時滿足條件:(甲)取最大值時的值與取最小值的值相同,(乙)?
(3)把滿足條件(甲)的實數(shù)對的集合記作A,設(shè),求使的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知為實數(shù),數(shù)列滿足,當時,,
(Ⅰ);(5分)
(Ⅱ)證明:對于數(shù)列,一定存在,使;(5分)
(Ⅲ)令,當時,求證:(6分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在等比數(shù)列中,,
(1)和公比;
(2)前6項的和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的首項其中令集合.
(Ⅰ)若是數(shù)列中首次為1的項,請寫出所有這樣數(shù)列的前三項;
(Ⅱ)求證:
(Ⅲ)當時,求集合中元素個數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列為等比數(shù)列, 其前項和為, 已知, 且對于任意的, , 成等差;求數(shù)列的通項公式;

查看答案和解析>>

同步練習冊答案