證明:(1)設(shè)f(x)=x
n+nx-1,
∵f(0)=-1<0,f(1)=n>0,
且函數(shù)f(x)的圖象在(0,+∞)上是連續(xù)的,
∴f(x)在(0,1)上至少有一個零點(diǎn),
即方程x
n+nx-1=0在(0,1)內(nèi)至少有一個根.
∵x∈(0,+∞),
∴f′(x)=nx
n-1+n>0,
∴f(x)在(0,+∞)上是增函數(shù).
∴方程x
n+nx-1=0在(0,+∞)內(nèi)有唯一根,
且根在(0,1)內(nèi),即a
n∈(0,1).
(2)方法一:∵
,
且函數(shù)f(x)的圖象在(0,+∞)上是連續(xù)的,
∴f(x)在
內(nèi)至少有一個零點(diǎn),
即方程x
n+nx-1=0在
內(nèi)至少有一個根.
又由(1)知函數(shù)f(x)在(0,+∞)上單調(diào)遞增,
∴方程x
n+nx-1=0在
內(nèi)有唯一根,
∴
.
∴
,
∴a
n+1<a
n.
方法二:由(1)知,a
nn+na
n-1=0,
a
n+1n+1+(n+1)a
n+1-1=0,
兩式相減得:a
n+1n+1+(n+1)a
n+1-a
nn-na
n=0,
若存在n∈N
*,使得a
n+1≥a
n,
則a
n+1≥a
n>a
nn,
從而a
n+1n+1+(n+1)a
n+1-a
nn-na
n>(n+1)a
n+1-a
nn-na
n=a
n+1-a
nn+na
n+1-na
n>0,矛盾.
所以a
n+1<a
n.
(3)由題設(shè)得
,
,
當(dāng)n∈N
*時,
.
∴
.
當(dāng)n≥3時有a
12+a
22+a
32+…
…
=
=
.
綜上a
12+a
22+…+a
n2<1.
分析:(1)設(shè)f(x)=x
n+nx-1,由f(0)=-1<0,f(1)=n>0,且函數(shù)f(x)的圖象在(0,+∞)上是連續(xù)的,知f(x)在(0,1)上至少有一個零點(diǎn),即方程x
n+nx-1=0在(0,1)內(nèi)至少有一個根,由此能夠證明a
n∈(0,1).
(2)法一:由
,且函數(shù)f(x)的圖象在(0,+∞)上是連續(xù)的,知f(x)在
內(nèi)至少有一個零點(diǎn),由函數(shù)f(x)在(0,+∞)上單調(diào)遞增,知方程x
n+nx-1=0在
內(nèi)有唯一根,由此能證明a
n+1<a
n. (9分)
法二:由a
nn+na
n-1=0,a
n+1n+1+(n+1)a
n+1-1=0,得:a
n+1n+1+(n+1)a
n+1-a
nn-na
n=0,由此利用反證法能夠證明a
n+1<a
n.
(3)由題設(shè)得
,
,當(dāng)n∈N
*時,
.故
.由此能夠證明a
12+a
22+…+a
n2<1.
點(diǎn)評:本題考查數(shù)列與不等式的綜合運(yùn)用,考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.綜合性強(qiáng),難度大,計算繁瑣,易出錯,是高考的重點(diǎn).解題時要認(rèn)真審題,注意反證明法的靈活運(yùn)用,仔細(xì)解答,注意培養(yǎng)計算能力.