【題目】一網(wǎng)站營(yíng)銷部為統(tǒng)計(jì)某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購(gòu)情況,隨機(jī)抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購(gòu)金額情況,如下表:

若將當(dāng)日網(wǎng)購(gòu)金額不小于2千元的網(wǎng)友稱為“網(wǎng)購(gòu)達(dá)人”,網(wǎng)購(gòu)金額小于2千元的網(wǎng)友稱為“網(wǎng)購(gòu)探者”.已知“網(wǎng)購(gòu)達(dá)人”與“網(wǎng)購(gòu)探者”人數(shù)的比例為2:3.

(1)確定的值,并補(bǔ)全頻率分布直方圖;

(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當(dāng)日在該網(wǎng)店網(wǎng)購(gòu)金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個(gè)不低于2千元,則該網(wǎng)店當(dāng)日被評(píng)為“皇冠店”,試判斷該網(wǎng)店當(dāng)日能否被評(píng)為“皇冠店”.

【答案】(1)見解析2見解析

【解析】試題分析:(1)由頻數(shù)之和為“網(wǎng)購(gòu)達(dá)人”與“網(wǎng)購(gòu)探者”人數(shù)的比例為2:3,列出關(guān)于的方程組,由此能求出的值,并補(bǔ)全頻率分布直方圖;2根據(jù)頻率分布直方圖分別計(jì)算平均數(shù)和中位數(shù),再與題設(shè)條件做比較,即可判斷.

試題解析:(1)由題意,得

化簡(jiǎn),得,

解得

補(bǔ)全的頻率分布直方圖如圖所示:

(2)設(shè)這60名網(wǎng)友的網(wǎng)購(gòu)金額的平均數(shù)為

(千元)

又∵, ,

∴這60名網(wǎng)友的網(wǎng)購(gòu)金額的中位數(shù)為1.5+0.3=1.8(千元)

∵平均數(shù),中位數(shù)

∴根據(jù)估算判斷,該網(wǎng)店當(dāng)日不能被評(píng)為“皇冠店”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+(b﹣1)x+1(a,b∈R,a>0).
(1)若f(1)=0,且對(duì)任意x∈R,都有f(2﹣x)=f(2+x),求f(x)的解析式;
(2)已知x1 , x2為函數(shù)f(x)的兩個(gè)零點(diǎn),且x2﹣x1=2,當(dāng)x∈(x1 , x2)時(shí),g(x)=﹣f(x)+2(x2﹣x)的最大值為,當(dāng)a≥2時(shí),求h(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的面積為,且與軸、軸分別交于兩點(diǎn).

1)求圓的方程;

(2)若直線與線段相交,求實(shí)數(shù)的取值范圍;

(3)試討論直線與(1)小題所求圓的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一網(wǎng)站營(yíng)銷部為統(tǒng)計(jì)某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購(gòu)情況,隨機(jī)抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購(gòu)金額情況,如下表:

若將當(dāng)日網(wǎng)購(gòu)金額不小于2千元的網(wǎng)友稱為“網(wǎng)購(gòu)達(dá)人”,網(wǎng)購(gòu)金額小于2千元的網(wǎng)友稱為“網(wǎng)購(gòu)探者”.已知“網(wǎng)購(gòu)達(dá)人”與“網(wǎng)購(gòu)探者”人數(shù)的比例為2:3.

(1)確定的值,并補(bǔ)全頻率分布直方圖;

(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當(dāng)日在該網(wǎng)店網(wǎng)購(gòu)金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個(gè)不低于2千元,則該網(wǎng)店當(dāng)日被評(píng)為“皇冠店”,試判斷該網(wǎng)店當(dāng)日能否被評(píng)為“皇冠店”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知以坐標(biāo)原點(diǎn)為圓心的圓與拋物線相交于不同的兩點(diǎn) ,與拋物線的準(zhǔn)線相交于不同的兩點(diǎn) ,且.

(1)求拋物線的方程;

(2)若不經(jīng)過(guò)坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿足.證明直線過(guò)定點(diǎn),并求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)f(x)=sin2x的圖象向右平移φ(0<φ< )個(gè)單位后得到函數(shù)g(x)的圖象.若對(duì)滿足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min= ,則φ=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù))在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

(Ⅰ)求實(shí)數(shù)的取值范圍;

(Ⅱ)記兩個(gè)極值點(diǎn)分別為, ),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線 的左右焦點(diǎn)分別為、, 右支上的點(diǎn),線段的左支于點(diǎn),若是邊長(zhǎng)等于的等邊三角形,則雙曲線的標(biāo)準(zhǔn)方程為( )

A. B. C. D.

【答案】A

【解析】

即雙曲線的標(biāo)準(zhǔn)方程為,選A.

型】單選題
結(jié)束】
11

【題目】張師傅欲將一球形的石材工件削砍加工成一圓柱形的新工件,已知原球形工件的半徑為,則張師傅的材料利用率的最大值等于(注:材料利用率=)( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若正數(shù)x,y滿足15x﹣y=22,則x3+y3﹣x2﹣y2的最小值為

查看答案和解析>>

同步練習(xí)冊(cè)答案