觀察下列等式:

1=1                 13=1

1+2=3               13+23=9

1+2+3=6             13+23+33=36

1+2+3+4=10          13+23+33+43=100

1+2+3+4+5=15        13+23+33+43+53=225

……

可以推測(cè):13+23+33+…+n3=           。(用含有n的代數(shù)式表示)

 

【答案】

【解析】觀察對(duì)比左右數(shù)列,可以發(fā)現(xiàn)右邊是左邊平方,

所以13+23+33+…+n3=(1+2+…+n)2=

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、[1]函數(shù)f(x)=x3+ax2+3x-9,已知f(x)在x=-3時(shí)取得極值,則a=
5

[2]觀察下列等式:1=1,1-4=-(1+2),1-4+9=(1+2+3),1-4+9-16=-(1+2+3+4),…由此推測(cè)第n個(gè)等式為
1-4+9-16+…+(-1)n+1n2=(-1)n+1(1+2+3+…+n)
.(不必化簡(jiǎn)結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•渭南二模)觀察下列等式:1×2=
1
3
×1×2×3
,1×2+2×3=
1
3
×2×3×4
,1×2+2×3+3×4=
1
3
×3×4×5
,…,照此規(guī)律,計(jì)算1×2+2×3+…+n(n+1)=
1
3
n(n+1)(n+2)
1
3
n(n+1)(n+2)
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式:1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,照此規(guī)律,第五個(gè)等式應(yīng)為
1-4+9-16+25=1+2+3+4+5
1-4+9-16+25=1+2+3+4+5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式:-1=-1,-1+3=2,-1+3-5=-3,-1+3-5+7=4,-1+3-5+7-9=-5,-1+3-5+7-9+11=6,…
(1)猜想反映一般規(guī)律的數(shù)學(xué)表達(dá)式;  (2)用數(shù)學(xué)歸納法證明該表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式:1=12,2+3+4=32,3+4+5+6+7=52…,根據(jù)上述規(guī)律,第四個(gè)等式為
4+5+6+7+8+9+10=72
4+5+6+7+8+9+10=72

查看答案和解析>>

同步練習(xí)冊(cè)答案